

Bayesian latent hierarchical model for transcriptomic meta-analysis to detect biomarkers with clustered meta-patterns of differential expression signals

¹Department of Biostatistics, University of Florida

Background

- Abundant transcriptomic data in public repositories.
- Meta-analysis to increase statistical power and reproducibility.
- Understand the interaction between the disease and different phenotypes.

Goal

- Perform transcriptomic meta-analysis via combining p-values.
- ² Discovery meta-analysis differential expression pattern (meta-pattern).

Background for meta-analysis

We consider three frequentists' hypothesis testing alternatives:

1 Biomarkers that are DE in all studies (HS_A) : • $H_0: \vec{\theta} \in \bigcap \{\theta_s = 0\} \text{ vs } H_A: \vec{\theta} \in \bigcap \{\theta_s \neq 0\}$ **2** Biomarkers that are DE one or more studies (HS_B) : • $H_0: \vec{\theta} \in \bigcap \{\theta_s = 0\} \text{ vs } H_A: \vec{\theta} \in \bigcup \{\theta_s \neq 0\}$ **3** Biomarkers that are DE in r or more studies (HS_r): • $H_0: \vec{\theta} \in \bigcap \{\theta_s = 0\} \text{ vs } H_A: \vec{\theta} \in \sum \mathbb{I}\{\theta_s \neq 0\} \ge r$ Problem: HS_A and HS_r are not complementary hypothesis testing setting.

Example for meta-pattern

(a) Heatmap

(b) CS

(c) bar plot Figure 1: Three meta-pattern modules (on row) of biomarkers from HIV transgenic rats example. Each brain region (HIP, PFC) or STR) represents a study.

²Department of Biostatistics, The Ohio State University

Graphical model

Figure 2: Graphical model representation of the Bayesian model.

Bayesian modeling

Figure 3: Z distribution.

Generative process:

• $Y_{qs} \in \{-1, 0, 1\}$ is DE indicator: $f^{(s)}(Z_{gs}|Y_{gs}) = f_0^{(s)}(Z_{gs}) \cdot \mathbb{I}(Y_{gs} = 0)$ $+f_{+1}^{(s)}(Z_{qs}) \cdot \mathbb{I}(Y_{qs}=1) + f_{-1}^{(s)}(Z_{qs}) \cdot \mathbb{I}(Y_{qs}=-1),$ • $Y_{gs} \sim \text{Mult}\left(1, (1 - \pi_g, \pi_q^+, \pi_q^-)\right) \cdot (0, 1, -1)$, where $\pi_{g}^{+} = \pi_{g}\delta_{g}, \ \pi_{q}^{-} = \pi_{g}(1 - \delta_{g}).$ $Z_{qs} \sim N(\mu_{qs}, 1)$ $\begin{cases} G_{s+} & \text{if } Y_{gs} = 1, \\ G_{s-} & \text{if } Y_{gs} = -1 \end{cases}$ • $\mu_{qs} \sim$ • $G_{s+} \sim DP(G_{0+}, \alpha_+)$ and $G_{s-} \sim DP(G_{0-}, \alpha_-)$, where G_{0+} is truncated normal distribution.

Priors:

• $\pi_q \sim \operatorname{Beta}(\gamma, 1 - \gamma);$ • $\gamma \sim \text{UNIF}(0, 1);$ • $\delta_q \sim \text{Beta}(\beta, \beta); \ \beta = 1/2$ **Zhiguang Huo¹** Chi Song^{2*} George Tseng^{3*}

Bayesian computing

$\gamma_g Y_{gs} \sim$
$\text{Beta}(\gamma/(G-\gamma) + Y_g^+ + Y_g^-, S - Y_g^+ - Y_g^- + 1),$
where $Y_{g}^{+} = \sum_{s} \mathbb{I}(Y_{gs} = 1), \ Y_{g}^{-} = \sum_{s} \mathbb{I}(Y_{gs} = -1).$
$_{g} Y_{gs} \sim \text{Beta}(\beta + Y_{g}^{+}, \beta + Y_{g}^{-}).$
Jpdate Y_{gs} 's: First update C_{gs} 's s.t.
$\Pr(C_{gs} = k C_{-g,s}, Z_{gs}, \pi_g^{\pm}) \propto$
$h_k^{(s)}(Z_{gs} C_{-g,s})(\pi_g^+)^{\mathbb{I}(k>0)}(\pi_g^-)^{\mathbb{I}(k<0)}(1-\pi_g)^{\mathbb{I}(k=0)}$
et $Y_{gs} = \operatorname{sgn}(C_{gs}),$

 $\mathbf{A} \gamma \propto \prod_{g=1}^{G} \mathrm{dBeta}(\pi_g; \gamma, 1 - \gamma)$

Decision making framework

• For meta-analysis purpose, we will declare differentially expressed genes which are in: • $\Omega_{\overline{A}}: \Omega_{\overline{A}}^1 = \{ \vec{\theta}_g : \sum_{s=1}^S \mathbb{I}(\theta_{gs} \neq 0) = S \}.$ • $\Omega_B: \ \Omega_B^1 = \{ \vec{\theta}_g : \sum_{s=1}^S \mathbb{I}(\theta_{gs} \neq 0) = 1 \}.$ • $\Omega_{\overline{r}}: \Omega_{\overline{r}}^1 = \{ \vec{\theta}_g : \sum_{s=1}^S \mathbb{I}(\theta_{gs} \neq 0) \ge r \}.$ • Compare our Bayesian FDR with FDR (Benjamini-Hochberg) from frequentists' perspective.

Simulation results

Table 1: FDR results, Nominal FDR 5%								
		$\mathcal{D}_{ar{A}}$	-		\mathcal{D}_B		$\mathcal{D}_{\bar{r}} (r = \lfloor S]$	$\overline{S/2 \rfloor + 1}$
S	σ	BayesMP	maxP	BayesMP	Fisher	AW	BayesMP	rOP
	1	0.058	0.207	0.042	0.035	0.035	0.034	0.086
		(0.008)	(0.014)	(0.004)	(0.005)	(0.004)	(0.004)	(0.007)
2	2	0.058	0.198	0.047	0.035	0.036	0.037	0.080
J		(0.010)	(0.017)	(0.006)	(0.006)	(0.006)	(0.005)	(0.009)
	3	0.043	0.184	0.050	0.035	0.036	0.036	0.073
FDB		(0.016)	(0.025)	(0.009)	(0.008)	(0.009)	(0.009)	(0.014)
	1	0.075	0.361	0.043	0.034	0.034	0.037	0.130
	T	(0.011)	(0.017)	(0.004)	(0.004)	(0.004)	(0.005)	(0.008)
5	2	0.079	0.349	0.046	0.034	0.034	0.042	0.115
0		(0.019)	(0.022)	(0.006)	(0.005)	(0.005)	(0.006)	(0.010)
	3	0.062	0.330	0.050	0.034	0.034	0.042	0.099
		(0.033)	(0.028)	(0.007)	(0.006)	(0.007)	(0.008)	(0.013)
			Tabl	e2∙AU	C resi	ults		
		\mathcal{D} -		$\mathcal{D}_{\mathcal{D}}$			$\mathcal{D}_{-}(r - S/2 \perp 1)$	
S	σ	ν_A BavesMP	n maxP	BayesMP	\mathcal{L}_B Fisher	AW	$\begin{bmatrix} \mathcal{D}_r & (\mathcal{F} = [\mathcal{L} \\ Baves MP \end{bmatrix}$	rOP
	0	0.976	0.926	0.973	0.973	0.973	0.980	0.972
	1	(0.003)	(0.003)	(0.002)	(0.002)	(0.002)	(0.002)	(0.003)
		0.906	0.876	0.880	0.878	0.876	0.902	0.873
3	2	(0.006)	(0.006)	(0.005)	(0.005)	(0.005)	(0.005)	(0.006)
	3	0.833	0.806	0.788	0.784	0.780	0.820	0.776
		(0.008)	(0.008)	(0.006)	(0.006)	(0.006)	(0.007)	(0.008)
AUC	1	0.974	0.920	0.978	0.978	0.979	0.985	0.979
		(0.004)	(0.003)	(0.002)	(0.002)	(0.002)	(0.002)	(0.002)
_	2	0.918	0.891	0.896	0.893	0.892	0.928	0.893
b		(0.007)	(0.006)	(0.004)	(0.004)	(0.004)	(0.004)	(0.004)
	3	0.866	0.833	0.812	0.805	0.800	0.859	0.801
				1			i la	

0|Z))

	Table 3: Module related pathways	
Target	pathway type	q value
module 1	KEGG LYSOSOME	$q = 2.8 \times 10^{-4}$
module 2	BIOCARTA AHSP PATHWAY	q = 0.017
module 3	DEFENSE RESPONSE	$q = 4.2 \times 10^{-8}$
module 4	BIOCARTA MCM PATHWAY	$q = 3.9 \times 10^{-3}$
module 5	none	
module 6	FC GAMMA R MEDIATED PHAGOCYTOSIS	q = 0.067

BayesMP is implemented in R calling C++. The BayesMP package is publicly available at GitHub https://github.com/Caleb-Huo/BayesMP.

³Department of Biostatistics, University of Pittsburgh

Tight clustering to get meta-pattern

• $\vec{U}_{qs} = (\Pr(Y_{qs} = 1|Z), \Pr(Y_{qs} = -1|Z), \Pr(Y_{qs} = -1|Z))$

• Calculate the Cosine dissimilarity of \vec{U}_{is} and \vec{U}_{is} , average over study index s.

• Apply tight clustering algorithm (Tseng and Wong, 2005) to the dissimilarity matrix.

Mouse metabolism data

(a) Heatmap (b) CS(c) bar plot Figure 4: Six meta-pattern modules of biomarkers from the mouse metabolism example.

Implementation