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Abstract
Disease subtype discovery is an essential step in delivering personalized medicine.
Disease subtyping via omics data has become a common approach for this purpose.
With the advancement of technology and the lower price for generating omics data,
multi-level and multi-cohort omics data are prevalent in the public domain, provid-
ing unprecedented opportunities to decrypt disease mechanisms. How to fully utilize
multi-level/multi-cohort omics data and incorporate established biological knowledge
toward disease subtyping remains a challenging problem. In this paper, we propose
a meta-analytic integrative sparse Kmeans (MISKmeans) algorithm for integrating
multi-cohort/multi-level omics data and prior biological knowledge. Compared with
previous methods, MISKmeans shows better clustering accuracy and feature selection
relevancy. An efficient R package, “MIS-Kmeans”, calling C++ is freely available on
GitHub (https://github.com/Caleb-Huo/MIS-Kmeans).

Keywords Two-way horizontal and vertical omics integration · Disease subtype
discovery · ADMM · Prior group information

1 Introduction

Disease subtyping is an essential step in delivering personalized medicine since differ-
ent subtypes usually show strong clinical relevance and are in many cases responsive
to different treatments [1]. Disease subtyping via omics data is prevalent in the litera-

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s12561-
019-09242-6) contains supplementary material, which is available to authorized users.

B Zhiguang Huo
zhuo@ufl.edu

B George Tseng
ctseng@pitt.edu

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12561-019-09242-6&domain=pdf
http://orcid.org/0000-0002-8032-4392
https://github.com/Caleb-Huo/MIS-Kmeans
https://doi.org/10.1007/s12561-019-09242-6
https://doi.org/10.1007/s12561-019-09242-6


2 Statistics in Biosciences (2020) 12:1–22

ture, and representative studies include leukemia [14], lymphoma [42], glioblastoma
[37,58], breast cancer [30,36], colorectal cancer [44], ovarian cancer [54], Parkin-
son’s disease [63] and Alzheimer’s disease [6]. Using breast cancer as an example,
the landmark paper by Perou et al. [38] was among the first to identify five clini-
cally meaningful subtypes (i.e., Luminal A, Luminal B, Her2-enriched, Basal-like
and Normal-like) using gene expression profiles. Similar subtypes were identified by
many independent studies afterwards [20,33,50,56,59], and these subtyping results
have been validated across studies with moderately satisfying consistency [51]. How-
ever, different studies claim different intrinsic gene sets (i.e., a set of genes to define
disease subtypes [36]). In addition, it has been pointed out that single cohort/single
omics (e.g., transcriptome) analysis has limited sample size and suffers from repro-
ducibility issues [10,47,48]. Over the years, with the advancement of biotechnology
(microarray andmassively parallel sequencing), abundant data have been accumulated
in public databases and repositories, including The Cancer Genome Atlas (TCGA),
Gene Expression Omnibus (GEO) [11] and Sequence Read Archive (SRA) [28].
These datasets provide unprecedented opportunities to decrypt disease mechanisms
via integrating multiple cohorts or multiple-level omics data types [55] (see Fig. 1a for
illustration of multiple cohorts or multiple-level omics data layout). Properly integrat-
ing these complex datasets will strengthen statistical power toward biological findings
[41]. On the other hand, a tremendous amount of biological knowledge has been estab-
lished through these datasets (e.g., gene pathway information, miRNA targeting gene
databases, and the cis-acting regulatory mechanism of a certain gene) [12,64]. An
example of group structure for prior biological knowledge is shown in Fig. 1b, c. In
Fig. 1b, a group represents the potential cis regulatory relationship between mRNA,
methylation and copy number variation (CNV) of the same gene symbol. In Fig. 1c,
a group is a biological pathway including a collection of functionally related genes,
which can potentially overlap with other pathways. Proper use of this prior knowledge
can greatly facilitate modeling integrative analysis [19].

In the literature, various types of omics data integration approaches have been
proposed. Tseng et al. [55] categorized omics data integration into two major types:
horizontal omics meta-analysis and vertical omics integrative analysis. On one hand,
horizontal omics meta-analysis aims to combine multiple studies of the same omics
data type (e.g., gene expression data from multiple studies as illustrated in dashed
rectangle I in Fig. 1a horizontally). This approach has been widely adopted to increase
statistical power and reproducibility for differential expression analysis [7,40], path-
way enrichment analysis [45], network analysis [9,66], clustering analysis [18], and
dimension reduction [27]. On the other hand, vertical omics integrative analysis aims
to integrate multi-levels of omics data from the same patient cohort [41] (e.g., genome-
wide profiling of gene expression, DNA CNV, methylation of the same study as
illustrated in dashed rectangle II in Fig. 1a vertically). The idea of directly combining
multi-levels of omics data has been extended into association analysis [4], regression
[26,60], and clustering. Others seek to integrate multi-levels of omics data via incor-
porating prior knowledge [19,39,52] as illustrated in Fig. 1b, c. Readers can refer to
[16,31,41] for comprehensive reviews of existing omics integration methods.

In the realm of integrative clustering, several methods have been proposed. Lock
and Dunson [32] performed Bayesian consensus clustering by fitting a finite Dirich-
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(A)

(B) (C)

Fig. 1 a Illustration of multi-omics meta-analytic data integration. b A group contains gene expression,
CNV and methylation of the same gene symbol. c A group is a pathway, which is a collection of genes
(e.g., cell cycle pathway)

let mixture model, which allowed both common and omics-type-specific clustering,
but this model did not consider feature selection and is thus not suitable for high-
dimensional omics data. Shen et al. [46] fitted an integrative latent variable factor
model (iCluster), but the method did not incorporate prior biological knowledge and
required extensive computing with large matrix operations. Wang et al. [61] proposed
a network fusion approach to aggregate the sample similarity in each omics type, but
this approach did not perform feature selection thus it was lack of biological inter-
pretation about which genes would contribute to the subtype results. Huo et al. [19]
fitted an integrative sparse Kmeans (ISKmeans) model by incorporating prior biologi-
cal knowledge by overlapping group lasso. However, to the best of our knowledge, no
one has performed a two-way omics integration to fully utilize multi-cohort andmulti-
omics information. Hence, in this paper we propose a meta-analytic multi-omics data
integration framework (MISKmeans) to perform disease subtype discovery (sample
clustering), extending from previous work on the meta-analytic sparse Kmeans algo-
rithm (MetaSparseKmeans,MSKM) [18] and the ISKmeans algorithm [19]. Themajor
novelty is that this algorithm is the first to simultaneously accommodate both horizon-
tal omics meta-analysis and vertical omics integrative analysis, closing the research
gap between horizontal and vertical omics data integration. Prior biological informa-
tion can also be incorporated to guide feature selection using overlapping group lasso
[22]. The complex optimization problem is efficiently solved using the alternating
direction method of multiplier (ADMM) [5]. Previously, MSKM [18] required the
computational complexity of order (K !)S−1 to match the clustering patterns. This is
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improved in this paper by efficient memory design so that the complexity reduces to
the order of S(S−1)K !/2. Such improvement makes it feasible to apply MISKmeans
in moderate scale subtype discovery analysis. In our simulation and real data applica-
tions, we not only show striking clinical differences between the resulting subtypes,
but also demonstrate better performance than the previous MSKM algorithm [18] and
the ISKmeans algorithm [19] in terms of clustering accuracy and feature selection
relevance. These appealing results are expected since the proposed algorithm simul-
taneously integrates multi-cohort, multi-omics and prior biological information and
thus generates the most reliable and comprehensive result.

2 Method

2.1 Kmeans Algorithm and Its Derivatives for Omics Data Integration

2.1.1 Kmeans Algorithm

Consider X jl the gene expression level of gene j and sample l. Note that we use gene
expression as an example, and it can be replacedwith other types of omics data. Denote
within cluster sum of square of gene j as WCSS j (C) = ∑K

k=1
∑

l∈Ck
(X jl − X̄ jCk )

2,

where X̄ jCk is the center for cluster k and gene j, K is the number of clusters,
C = (C1, . . . ,Ck, . . . ,CK ) is the clustering result, with Ck indicating a collection
of subjects of cluster k. The Kmeans algorithm [15] obtains the clustering results by
minimizing the WCSS:

min
C

p∑

j=1

WCSS j (C).

2.1.2 Sparse Kmeans Algorithm

Since the total cluster sum of square
(
TSS j = ∑

l∈C (X jl − X̄ jC )2
)
can be decom-

posed as between cluster sum of square (BCSS) plus WCSS, minimizing the WCSS
is equivalent to maximizing the BCSS as BCSS j (C) = TSS j −WCSS j (C).A sparse
Kmeans algorithm was proposed [65] by adding gene specific weight to BCSS and
imposing lasso regularization on gene specific weight:

min
C,z

−
p∑

j=1

z jBCSS j (C) + γ ‖z‖1

subject to ‖z‖2 ≤ 1, z j ≥ 0, ∀ j, (1)

where z j denotes the weight for gene j, ‖z‖1 and ‖z‖2 represent the l1 norm and l2
norm of the weight vector z = (z1, . . . , z p) and γ is a tuning parameter for the l1
norm penalty. By iteratively optimizing clustering assignment C and weight vector
z, one can obtain both clustering result C and a sparse solution of feature selection
(non-zero element of z).
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2.1.3 Meta-analytic Sparse Kmeans Algorithm

Huo et al. [18] extended Eq. 1 toward a meta-analytic framework of sparse clustering
(MSKM) by combining multiple cohorts using standardized BCSS (standardized by
TSS), by which potential batch effect can be circumvented, and different studies are on
a comparable scale. The standardized BCSS is defined as R j (C) = BCSS j (C)/TSS j

(ranges between 0 and 1), which measures the separating ability of each gene feature.
The algorithm is represented as:

min
C(s),z,M

−
p∑

j=1

z j ×
[
1

S

S∑

s=1

R(s)
j (C (s)) + λ × f j (M)

]

+ γ ‖z‖1

subject to ‖z‖2 ≤ 1, z j ≥ 0, (2)

where R(s)
j (C (s)) denotes the separating ability of gene j and study s, with clustering

assignment C (s), with C (s) = {C (s)
1 , . . . ,C (s)

K }, and C (s)
k (1 ≤ k ≤ K ) is a collection

of sampleswithin the kth subtypes (clusters) of cohort s.Note K is assumed to be equal
across all cohorts since we expect the same number of subtypes for a common disease.
In order to guarantee that the resulting subtype patterns are consistent across studies,
a pattern matching award function f j (M) is introduced for feature j, where M is a
cluster matching rule across S studies. For instance, when S = 2 and K = 3, denote
M1 = (C (1)

1 −C (2)
1 ,C (1)

2 −C (2)
3 ,C (1)

3 −C (2)
2 ) as a possible matching rule, where first

cluster in study 1matches to first cluster in study 2, second cluster in study 1matches to
third cluster in study 2, and third cluster in study 1matches to second cluster in study 2.
Similarly, M2 = (C (1)

1 −C (2)
1 ,C (1)

2 −C (2)
2 ,C (1)

3 −C (2)
3 ) is another possible matching

rule. FigureS1 shows a concrete example of the pattern matching based on M1 and
M2. In this example, M2 is favored over M1, as it provides consistent pattern matching
across subtypes (also see detailed explanation in Supplementary Sect. I.1). For each

pair of study s and s′, the pattern award function, denoted as h(s,s′)
j (M), is defined as the

multi-class correlation (MCC) [18,34], and the details are described in Supplementary

Sect. I.1. f j (M) = 2
S(S−1)

∑
s<s′ h

(s,s′)
j (M) is the pattern matching reward function

aggregating all pairs of studies s, s′. By definition f j (M) ranges from 0 to 1, with
the larger value representing more consistent clustering pattern across all studies, the
separating ability 1

S

∑S
s=1 R

(s)
j and the matching ability f j (M) are comparable since

both of them range from 0 to 1. Byminimizing Eq. 2, we simultaneously obtain feature
selection, a clustering pattern in each cohort and subtype patterns match rules, which
defines final subtypes across all studies.

2.1.4 Integrative Sparse Kmeans Algorithm

Huo et al. [19] extended Eq. 1 to group structured sparse Kmeans (ISKmeans). Under
this scenario, we consider p as the total number of features to be combined, including
all levels of omics datasets. We further impose the overlapping group lasso penalty
term Ω(z) in the objective function, which encourages features from the same group
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to be selected together. Such overlapping group structure is shown and explained in
Fig. 1b, c, in which a group contains multiple levels of omics features of the same gene
symbol or a collection of genes inside a pathway. The objective function of ISKmeans
is shown below:

min
C,z

−
p∑

j=1

z j R j (C) + γα‖z‖1 + γ (1 − α)Ω(z)

subject to ‖z‖2 ≤ 1, z j ≥ 0, ∀ j, (3)

where γ is still the tuning parameter controlling the number of non-zero features, and
α ∈ [0, 1] is a term balancing between individual feature penalty and group feature
penalty. If α = 1, only the individual feature penalty is imposed, and if α = 0, only
the group feature penalty is imposed. The overlapping group lasso penalty is defined
as Ω(z) = ∑

1≤g≤G0
wg‖mg ◦ z‖, where G0 is the total number of prior groups

(potentially overlapping), wg ∈ R is the group level weight coefficient for group g,
mg ∈ R

p is the feature level design vector of the group g and ◦ denotes Hadamard
product. For example, there are three features {1, 2, 3} and two groups J1 and J2,where
J1 = {1, 2} and J2 = {2, 3} (J1 and J2 overlap with feature {2}). Under this scenario,
the overlapping group lasso penaltyΩ(z) = w1

√
m2

1z
2
1 + m2

2z
2
2 +w2

√
m2

2z
2
2 + m2

3z
2
3.

wg and mg have to be designed carefully, otherwise bias will be introduced toward
feature selection. Below is an illustrating example to reflect the potential bias in the
coefficient design. Firstly, if w2 is larger than w1, J2 will be penalized more than J1,
and thus features in group J2 are less likely to be selected. Secondly, when fixing
w1 = w2, if we assign m1 = m2 = m3, feature {2} will be over penalized since m2
involves in both J1 and J2. It is a challenging question how to design these coefficients
such that the feature selection is unbiased under the overlapping group case. Huo et
al. [19] has proposed a design of overlapping group lasso penalty for wg and mg,

which satisfies the “unbiased feature selection principle”. This unbiased design is also
adopted in MISKmeans and details will be introduced in the Supplementary Sect. I.2.

2.2 Objective Function of MISKmeans

We propose the MISKmeans algorithm objective function by further extending Eqs. 2
and 3.

min
C(s),z,M

−
p∑

j=1

z j ×
[
1

S

S∑

s=1

R(s)
j + λ × f j (M)

]

+ P(z)

s.t. ‖z‖2 ≤ 1, z j ≥ 0, P(z) = γα‖z‖1 + γ (1 − α)Ω(z). (4)

The objective function of MISKmeans in Eq. 4 generates a common set of intrinsic
features from the non-zero estimated weight z j for all S cohorts. The second term R(s)

j

measures standardized BCSS of study s and feature j, and minimizing −R(s)
j yields

good sample clustering separation in each cohort. The third term f j (M) guarantees
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the clustering patterns are consistent across cohorts, which leads to a definition of
common disease subtype. The last term P(z) is composed of two terms: a l1 norm
penalty term ‖z‖1 generating sparsity on feature weights to facilitate feature selection
and an overlapping group lasso termΩ(z) encouraging features belonging to the same
group to be selected together. Such a penalty design guarantees that a small set of
informative features will be selected. The overlapping group lasso penalty is Ω(z) =∑

1≤g≤G0
wg‖mg ◦ z‖ (the same as in the previous subsection), and the “unbiased

feature selection principle” are similarly adopted for the coefficient design of wg and
mg. Details about the definition of “unbiased feature selection principle” and the
coefficient design for Ω(z) are given in the Supplementary Sect. I.2. Further, MSKM
(Eq. 2) and ISKmeans (Eq. 3) are special cases of MISKmeans (Eq. 4). MISKmeans
(Eq. 4) reduces to MSKM when α = 1 and reduces to ISKmeans when S = 1.

2.3 Tuning Parameter Selection

K , λ, γ and α need to be estimated in Eq. 4.

2.3.1 Selection of K

K is assumed to be the same for all cohorts (same number of subtypes in different
studies). In the literature, there are two types of integrative clustering algorithms: (1)
assuming equal number of clusters for different layers of omics data. In line with this
assumption, there are iCluster [46], ISKmeans [19], and similarity network fusion
[61], (2) assuming unequal number of clusters for different layers of omics data. In
line with this assumption, there is Bayesian concensus clustering [32]. The proposed
MISKmeans extends from ISKmeans, which assumes common number of clusters.
The issue of estimating K has been widely discussed in the literature and has been
well-recognized as a difficult and data-dependent problem [25,35]. Here, we sug-
gest to use gap statistics [53] in individual studies and make a joint decision. For
example, one can perform gap statistics using the sparse Kmeans as the clustering
algorithm to determine K in each individual studies. And a consensus K can be deter-
mined by majority voting from individual studies. However, in the case where no
consensus K can be determined, we suggest to use domain knowledge to determine
K , or try multiple K s and determine the best choice via other external biological
knowledge.

2.3.2 Selection of �

λ Balances the separation ability and clustering pattern matching ability. Huo et al.
[18] has pointed out that λ is not sensitive to the performance of the clustering results
and has suggested the choice of λ = 0.5. In this paper, we further proposed a post-
selection algorithm to determine λ such that

∑
j R

(s)
j (C (s)) = λ

∑
j f j (M) given one

preset MISKmeans result. In Sect. 3.1.2, we have performed simulations with various
signal strengths and prior group information accuracy. This sensitivity analysis shows
that the choice of λ is not very sensitive for the performance of clustering accuracy.
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Fixing λ = 0.5 or choosing λ by the proposed selection criteria usually perform well.
As a result, we apply λ = 0.5 throughout the paper for computational convenience
unless otherwise indicated.

2.3.3 Selection of˛

α Balances between individual feature penalty and group penalty in the sparse group
lasso [49]. According to Eq. 4, α = 1 Means we only emphasize on individual feature
penalty and ignore overlapping group penalty, in which the MISKmeans is equivalent
to MSKM. α = 0 means we only emphasize overlapping group penalty and ignore
individual feature penalty. Simon et al. [49] argued that there is no theoretically optimal
selection for α since selection of α relates to multiple factors such as accuracy of
prior group information and sparsity within groups. Choice of α depends on whether
the grouping information is correct. In this paper, we further propose a post-selection
algorithm to determineα such thatα‖z‖1 = (1−α)Ω(z) given one presetMISKmeans
result. The sensitivity analysis in Sect. 3.1.2 shows that smaller α is preferred given
correct grouping information, and larger α is preferred given partially correct grouping
information. We further find that fixing α = 0.5 or choosing the proposed selection
criteria usually perform well regardless of the grouping information is correct or
partially correct. As a result, we apply α = 0.5 throughout the paper for computational
convenience unless otherwise indicated.

2.3.4 Selection of �

γ is the penalty coefficient to control number of selected features. When γ is large, we
place large penalty on the objective function and end up with less selected features.
When γ is small, we place small penalty and will include more features. We follow
and extend the gap statistic procedure [18,53] to estimate γ :

(1) For each feature in each omics type, randomly permute the omics measurement
value (permute samples). This creates a permuted data set X (1). Repeat for B
times to generate X (1), X (2), . . . , X (B).

(2) For each potential tuning parameter γ, compute the gap statistics as below.

Gap(γ ) = O(γ ) − 1

B

B∑

b=1

Ob(γ ), (5)

where O(γ ) = −∑J
j=1 z

∗
j R j (C∗) is from observed data, where z∗,C∗ are the

minimizer of the objective function in Eq. 4 given γ. Ob(γ ) is similar to O(γ )

but generated from permuted data X (b).

(3) For a range of selections of γ, select γ ∗ such that the gap statistics in Eq. 5 is
minimized.

In practice, calculating gap statistics from a chain of γ can be performed efficiently
by adopting warm start for adjacent γ ’s. For example, after calculating O(γ1), the
resulting weights can be used as an initial value for the next nearby γ2 = γ1 + Δ
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to calculate O(γ2) in the optimization iteration for fast convergence. An example of
gap statistics result for our simulation is shown in Fig.S2, where the gap statistics
successfully uncover the underlying 1800 subtype predictive genes.

2.4 Optimization

Three parametersC (s), z, M in objective function of Eq. 4 are updated iteratively until
convergence. Below is the detailed optimization procedure:

(1) Estimate zs in the sth cohort using sparse Kmeans algorithm. Set initial value of
z = 1

S

∑S
i=1 zs .

(2) Fix z; update C (s) in study s (1 ≤ s ≤ S) by weighted Kmeans.
(3) Fix z and C (s); update M by exhaustive search.
(4) Fix C (s) and M; update z.
(5) Iterate Step 2 through Step 4 until convergence.

In Step 2, it is well acknowledged that most Kmeans-derived algorithms suffer from
the local optimum problem. A commonly adopted approach is to perform multiple
initializations and select the clustering result with the best objective score. Our R
package sets 20 initializations as the default for this Kmeans step, but the user can
further tune this parameter to avoid the local minimum problem as much as possi-
ble. For Step 3, Ref. [18] claimed total searching configuration as (K !)S−1, which
is extremely hard when K and S are large. In our new implementation, we bring
down the computational complexity to S(S − 1)K !/2 by caching all pairwise MCC

h(s,s′)
j (M).Since all pairwiseMCCare cached, the complexity of the exhaustive search

itself is ignorable compared to the caching step, whose complexity is S(S − 1)K !/2.
Such improvement makes it feasible to apply MISKmeans in moderate scale analysis.
Step 4 is a challenging convex optimization problem since sparse overlapping group
lasso penalty is involved. We adopt the ADMMs to efficiently solve this problem
[5,19].

3 Results

In order to evaluate the two-way integration approach and compare to the one-
way integration (either horizontal or vertical), we compared the performance of
MISKmeans, ISKmeans and MSKM in simulation studies. Comparisons with other
one-way integrative clustering method have been discussed previously [19,61]. For
example, ISKmeans was shown to outperform iCluster in Huo et al. [19] and the
comparison will not be repeated here. Our proposed algorithm is further eval-
uated in two real datasets, including multi-cohort multi-omics breast cancer data
using multiple levels of omics features of the same gene symbol as group infor-
mation and multi-cohort leukemia data using external pathway database as group
information. The datasets description is shown in TableS1. Note that we have set
20 initializations for all Kmeans-related procedures to try to avoid local optimum
problems.
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3.1 Simulation Study

3.1.1 Main Simulation Result

To compare the performance of MISKmeans, ISKmeans and MSKM, we designed
simulations with details described in Supplementary Sect. II. To be brief, we simu-
lated three multi-omics studies, with each study containing two omics types (gene
expression data and DNA methylation data). Each omics type contained (a) 900 sub-
type predictive genes—genes that define the underlying subtypes, (b) 2400 confounder
impacted genes (e.g., gender, race, other demographic factors or disease stage, etc.),
which added heterogeneity to each study to complicate disease subtype discovery, (c)
5000 non-informative genes—random noise. There were totally 16,600 features and
more than 100 subjects for each study. The simulation also imposed correct group
structure between the subtype predictive genes from two omics types, which were
prior knowledge fed to MISKmeans and ISKmeans. Further, we used a parameter f
to denote the subtype separation ability, with large f indicating stronger separation
ability. For a fair comparison, we also implemented the MSKM algorithm with the
improved pattern matching complexity [i.e., S(S − 1)K !/2].

In order to determine number of clusters K from the data, we selected 500 features
of largest variance to perform gap statistics using the sparse Kmeans as clustering
algorithm, in each study and each omics type. The resulting gap statistics (Fig.S3)
implies K = 3 is optimal, which is consensus among majority of studies/omics types.
To benchmark the performance, we used ARI [17] and Jaccard index [21] to evaluate
the clustering and feature selection performance. ARI calculates the consistency of
the clustering result with the underlying true clustering in simulation (the range is
−1 to 1, and 1 represents exactly the same partition as the underlying truth). The
Jaccard index compares the similarity and diversity of two feature sets, defined as
the size of the intersection of two feature sets divided by the size of the union of
two feature sets (the range is 0 to 1, and 1 represents identical feature sets compared
to the underlying truth). Note that MISKmeans integrated three multi-omics studies
simultaneously, ISKmeans integrated each of the multi-omics studies individually,
then averaged the results from all studies, and the MSKM integrated three studies
for each omics type, respectively, and then averaged the results from all omics types.
To eliminate the confounding effect of tuning parameter selection, we pre-selected a
wide range of tuning parameters for all methods and chose the best tuning parameter
such that the number of selected features were closest to the underlying truth for each
method.The resultingARI and Jaccard index are given inTable 1.Clearly,MISKmeans
outperforms ISKmeans and MSKM, especially when the signal level f is small. We
further compared feature selection in terms of area under the curve (AUC) of ROC
curve, which avoided the issue of tuning parameter selection. Here, the sensitivity and
specificity of the ROC curve were calculated by comparing the selected features to
the underlying subtype predictive genes. Remarkably, MISKmeans beats ISKmeans
MSKMwith perfect AUCs. In addition, all three methods were very fast (1–2 minitus)
for integrating high-dimensional multi-omics data. Note that the time was calculated
by summing up all individual study evaluation time for ISKmeans or individual omics
type evaluation time for MSKM.
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Table 1 Comparison table of simulation for MISKmeans, ISKmeans and MetaSparseKmeans (MSKM),
with relative effect size f = 0.6, 0.4 and 0.3

f Method ARI Jaccard index AUC Time (min)

0.6 MISKmeans 0.94 (0.03) 1 (0) 1 (0) 2.42

ISKmeans 1 (0) 0.92 (0.02) 0.97 (0.01) 1.32

MSKM 0.85 (0.24) 0.8 (0.22) 0.92 (0.11) 1.28

0.4 MISKmeans 0.99 (0.01) 1 (0) 1 (0) 1.84

ISKmeans 0.98 (0.02) 0.82 (0.03) 0.92 (0.02) 1.33

MSKM 0.74 (0.25) 0.67 (0.23) 0.89 (0.13) 1.54

0.3 MISKmeans 0.94 (0.03) 1 (0) 1 (0) 2.42

ISKmeans 0.63 (0.18) 0.55 (0.11) 0.78 (0.05) 1.4

MSKM 0.36 (0.19) 0.4 (0.16) 0.8 (0.11) 1.64

We simulated B = 100 times and calculated mean and (standard deviation) of each quantity. For each
method, we selected the tuning parameter such that the number of selection features were closest to the
underlying truth

3.1.2 Sensitivity Analysis of � and˛

To evaluate the impact of different choices of λ and α; the performance of the default
choice of λ = 1/2, α = 1/2; and the performance of the λ and α by the proposed
selection criteria, we performed simulations in the following four special settings.
These special simulation settings inherit the general procedure of the main simulation
(e.g., S = 3, T = 2), but vary in the following aspects:

(a) f1 = 0.6, f2 = 0.6, f3 = 0.4, and θ = 1.
(b) f1 = 0.6, f2 = 0.6, f3 = 0.4, and θ = 0.6.
(c) f1 = 0.4, f2 = 0.4, f3 = 0.2, and θ = 1.
(d) f1 = 0.4, f2 = 0.4, f3 = 0.2, and θ = 0.6.

The candidate λ = 0.1, 0.2, 0.5, 1, 2 and the λ∗ by the selection criteria proposed
in Sect. 2.3.2; the candidate α = 0.05, 0.5, 0.95, and the α∗ by the selection criteria
proposed in Sect. 2.3.3 were jointly evaluated. These simulations were repeated for
B = 50 times. The performance is shown in TablesS2 and S3. We have the following
observations from these tables: (a) when studies have strong to moderate signals ( f =
0.6–0.4) and the grouping information is correct (θ = 1), the clustering accuracy is
very high regardless different choices of α and λ, and the feature selection accuracy is
better given smaller α (e.g., α = 0.05 or 0.5), (b) when studies have strong tomoderate
signals ( f = 0.6–0.4) and the grouping information is partially correct (θ = 0.6), the
clustering accuracy is very high regardless different choices of α and λ, and the feature
selection accuracy is better given larger α (e.g., α = 0.5 or 0.95), (c) when studies
have moderate to weak signals ( f = 0.4–0.2) and the grouping information is correct
(θ = 1), the clustering accuracy are similar for different choices of α and λ, and the
feature selection accuracy is better given smaller α (e.g., α = 0.05 or 0.5), (d) when
studies have moderate to weak signals ( f = 0.4–0.2) and the grouping information is
partially correct (θ = 0.6), the clustering accuracy are similar for different choices of
α and λ, and the feature selection accuracy is better given larger α (e.g., α = 0.5 or
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0.95). Regardless of various simulation settings, the default tuning parameter α = 0.5
and λ = 0.5, aswell as the tuning parameter by the proposed selection criteria (marked
by ∗) generally perform very good.

Collectively, the choice of λ is not very sensitive for the performance of clustering
accuracy. Fixing λ = 0.5 or choosing λ by the proposed selection criteria usually
perform well. Choice of α depends on whether the grouping information if correct.
Smaller α is preferred given correct grouping information, and larger α is preferred
given partially correct grouping information. Fixing α = 0.5 or choosing α by the
proposed selection criteria usually perform well for both scenarios. For computational
convenience, we will fix λ = 0.5 and α = 0.5 for all other evaluations.

3.2 Multi-cohort Multi-omics Breast Cancer Example

In this breast cancer example, we combined TCGA data [62] and METABRIC data
[8], with gene expression and CNV in both of them. The gene expression data from
array and RNA-seq were transformed in log-scale, and the CNV data were measured
by segment mean values, which are equal to log2(copy-number/2). For METABRIC,
we adopted the same protocol [8] to split the cohort into a discovery set and validation
set. Detailed descriptions regarding platforms and the number of features for each
level of omics data are available in Table S1(a). Detailed preprocessing procedures
are given in the Supplementary Sect. III. We applied MISKmeans on the multi-cohort
(TCGA+METABRIC discovery set) multi-omics data and compared with ISKmeans
(applied to METABRIC discovery only) and MSKM (ignore the grouping). In order
to determine number of clusters K from the data, we selected 500 features of largest
variance to perform gap statistics using the sparse Kmeans as clustering algorithm, in
each study and each omics type. However, in Fig.S4, we didn’t have a consensus K
that is supported in all cases. Instead, we chose K = 5 since it is well known that there
are five subtypes of breast cancer by PAM50 definition [36]. For a fair comparison, we
chose the tuning parameter such that each method ends up with about 1000 features.

The resulting multi-omics profiles of MISKmeans are depicted in Fig. 2. We
obtained five distinct subtypes from TCGA and METABRIC discovery multi-omics
data, respectively, and the clustering patterns were consistent across the two cohorts.
To benchmark the performance, we evaluated survival differences among the sub-
types obtained from MISKmeans in the METABRIC discovery cohort. The resulting
p value for the survival difference among five subtypes from likelihood ratio test after
adjusting for treatment (chemotherapy) is 1.35 × 10−8, indicating that the resulting
subtypes are have distinct survival difference.

We further compared MISKmeans with ISKmeans (only on METABRIC discov-
ery set) and MSKM in terms of feature selection and clustering accuracy. For feature
selection, since we imposed the cis-regulatory relationship between mRNA and CNV
as prior knowledge, we wanted to confirm whether such pairs of features were more
frequently selected by MISKmeans. Therefore, we investigated two categories of fea-
ture groups defined in Huo et al. [19]: G1 and G2. G2 represents a feature group
where both mRNA and CNV of the same gene symbol are selected, while G1 rep-
resents a feature group where either mRNA or CNV is selected. The comparison
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Fig. 2 Multi-cohort multi-omics
clustering results using breast
cancer data. The color bar on top
of heatmap denotes distinct
subtypes. a TCGA gene
expression. b TCGA CNV. c
METABRIC gene expression. d
METABRIC CNV (Color figure
online)

(A) (C)

(B) (D)

Table 2 Comparing performance on BRCA in terms of clustering consistency (in METABRIC discovery
set) with PAM50 (measured by ARI), number of cis-regulatory groups (G2) and survival difference of five
groups

Method nfeature G1 G2 Time Silhouette ARI Survival

MISKmeans 992 334 329 30.8 0.11 0.34 7.87

ISKmeans 911 805 53 6.11 0.09 0.25 7.77

MSKM 987 977 5 28.3 0.11 0.34 7.11

PAM50 6.06

Survival p values are measured in − log10 scale. Time is measured in minutes

results of MISKmeans, ISKmeans and MSKM in terms of feature selection are shown
in Table 2. Clearly, MISKmeans and ISKmeans obtained more G2 features than
MSKM. This is biologically more interpretable but not surprising since MISKmeans
and ISKmeans utilized multi-omics regulatory information, and features of the same
group are expected to be selected together. Remarkably, MISKmeans selects more
G2 features than ISKmeans, indicating the potential enhancement of feature selection
with multi-omics meta-analytic integration.

For clustering accuracy, we do not know the underlying truth, but survival sepa-
ration is a clinical relevant benchmark to compare different methods. Table 2 shows
that the p value of survival difference (adjusted for chemotherapy) for the clustering
results defined by MISKmeans is slightly more significant than the other methods.
We also compared the clustering result with the PAM50 subtype definition in terms
of ARI in METABRIC discovery cohort. MISKmeans and MSKM achieve higher
ARI compared to ISKmeans using PAM50 as benchmark. The five-by-five confusion
table of MISKmeans clustering result and PAM50 subtypes is in TableS4. Note that
the ARI for PAM50 and the three integrative methods is not very high (0.25–0.34),
which may be due to the fact that PAM50 was defined by gene expression only, but
in our case multi-omics data are integrated. Since the p value for survival differ-
ence for MISKmeans is more significant than that of PAM50, the subtypes defined
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by MISKmeans may be clinically more meaningful than that of PAM50. This may
indicate certain machine learning methods could achieve better breast cancer subtype
definitions. In addition, we used Silhouette scores [43] to assess the coherence of
the resulting clustering. We found MISKmeans and MSKM achieved higher average
Silhouette scores than ISKmeans, meaning that combining multiple cohorts indeed
enhanced clustering result. Computing time of all three methods is within around
30min.

Further, we applied weighted Kmeans in the METABRIC validation cohort, using
the selected genes from each method, respectively. The resulting survival compari-
son p values, ARI and Silhouette scores are shown in Table S5. Again, we observe
MISKmeans and MSKM outperform ISKmeans.

3.3 Multi-cohort Leukemia Transcriptomic Datasets Using Pathway Database as
Prior Knowledge

In the previous multi-cohort multi-omics breast cancer example, we have used multi-
omics features of the same gene symbol as group structure. MISKmeans can also
be applied to single omics data type with pathway database as group structure (i.e.,
a pathway targets a collection of genes, and two pathways may contain overlapping
genes), which is often encountered in real data application. We apply MISKmeans
to integrate three leukemia transcriptomic datasets, including [2,29,57] (details see
TableS1(b)).WeusedBioCarta pathway (http://www.broadinstitute.org/gsea/msigdb/
collections.jsp#C2) as prior group structure (BioCarta contains 217 pathways). In
this multi-cohort leukemia example, there are three underlying subtypes defined by
translocation or inversion of chromosomes: inv(16) (inversions in chromosome 16),
t(15; 17) (translocations between chromosome 15 and 17), t(8; 21) (translocations
between chromosomes 8 and 21), which have been well studied with different treat-
ment responses and prognosis outcomes. We chose the tuning parameter K = 3 to
be consistent with the underlying truth. The expression data for Verhaak, Balgobind
range from [3.169, 15.132] while Kohlmann ranged from [0,1]. All the datasets were
downloaded directly from theNCBIGEOwebsite (GSE6891, GSE17855, GSE13159,
respectively). There were 54,613 probe sets in each study, and we removed probe sets
with any missing value in it. If multiple microarray probes matched to the same gene
symbol, we selected the representative probe with the largest interquartile range (IQR)
[13]. We ended up with 20,154 unique genes across all three cohorts.

3.3.1 Main Result

In order to determine number of clusters K from the data, we selected 500 features of
largest variance to perform gap statistics using the sparse Kmeans as clustering algo-
rithm, in each of the three studies. The resulting gap statistics (Fig. S5) implies K = 3
is optimal, which is consensus among all three studies. The resulting transcriptomic
profiles of these three leukemia data sets after applying MISKmeans are shown in
Fig. S6. A common set of intrinsic genes are selected across three studies. The clus-
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Table 3 Leukemia data feature selection (numGenes number of genes selected) and clustering accuracy
(ARI in each study)

Types numGenes Verhaak Balgobind Kohlmann Time

MISKmeans 1001 0.89 1 0.95 1.5

MSKM 1009 0.89 0.96 0.95 0.72

ISKmeans Verhaak 987 0.93 NA NA 0.34

ISKmeans Balgobind 1005 NA 0.79 NA 0.32

ISKmeans Kohlmann 1009 NA NA 0.95 0.4

Time is evaluated in minute

tering patterns are distinct and consistent across three studies, with ARI (comparing
to the underlying truth) equal to 0.893, 1, and 0.948, respectively.

To further benchmark the performance, we also applied MSKM ignoring the path-
way knowledge and ISKmeans in three individual studies separately, using the same
BioCarta pathway as prior group structure. On the one hand, the clustering accuracy
shown in Table 3 indicates that MISKmeans generally has slightly better clustering
accuracy than MSKM and ISKmeans. On the other hand, MISKmeans and MSKM
provide a unified feature selection results across three studies while ISKmeans gen-
erates unstable feature selection across studies with low Jaccard indexes (0.344 for
Balgobind vs. Kohlmann, 0.365 for Verhaak vs. Balgobind and 0.365 for Verhaak vs.
Kohlmann). In this example, the computing time is very fast for all methods.

To further evaluate functional annotation of the selected genes by each method, we
employed pathway enrichment analysis via Fisher’s exact test using, BioCarta, KEGG
and Reactome as three different testing pathway databases. Five methods, including
MISKmeans (BioCarta), MSKM, ISKmeans on Verhaak (BioCarta), ISKmeans on
Balgobind (BioCarta), and ISKmeans on Kohlmann (BioCarta) are compared, where
(BioCarta) indicates themethod utilized BioCarta as group structure. The jittered plots
of− log10 p values are shown in Fig. 3.MISKmeans and ISKmeans showmore signif-
icant pathways consistently in different testing pathway databases, which is expected
since we used BioCarta pathway as prior knowledge to guide feature selection. This
indicates incorporating prior knowledge indeed improves feature selection in the sense
that the selected feature is more biologically meaningful. Remarkably, MISKmeans
can identify more significant pathways than ISKmeans in general, though both of
these methods utilize prior biological knowledge. This indicates MISKmeans is more
powerful in selecting reliable and meaningful features than ISKmeans by combin-
ing multiple cohorts. Note that there is no overfitting issue when the testing pathway
databases are KEGG and Reactome since they are different from the prior information
BioCarta. Similarly, the results using KEGG and Reactome as prior information are
in Fig. S7.

3.3.2 Robustness Analysis

We performed robustness analysis to assess the performance of MISKmeans (Bio-
Carta), ISKmeans (BioCarta) and MSKM. For robustness analysis, we randomly
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Fig. 3 Pathwayenrichment analysis of thefivemethods usingBioCarta (left),KEGG(middle) andReactome
(right) as testing pathway database. Five methods, including MISKmeans (BioCarta), MetaSparseKmeans,
ISKmeans on Verhaak (BioCarta), ISKmeans on Balgobind (BioCarta), and ISKmeans on Kohlmann (Bio-
Carta) were compared, where (BioCarta) indicates the method utilized BioCarta as group structure. The
horizontal black line is the 5% Bonferroni correction criteria. The number of pathways passing Bonferroni
correction (correct p < 5%) is listed below the plot

selected 2/3 samples in each study and applied the three methods, respectively, in
each iteration. We repeated the above iterations 100 times. To benchmark the feature
selection robustness, we calculated all pairwise Jacaard index of these 100 iterations—
totally

(100
2

) = 4950 Jacaard index. Note that similar to the previous analysis, we chose
the tuning parameter such that approximately 1000 features are selected. To benchmark
the clustering assignment robustness, we calculated the ARI between each iteration
and the underlying clustering label. Note that we didn’t perform pairwise ARI between
each iteration because the selected samples may differ too much and thus the resulting
ARI may not reliable. The mean and standard deviation of these Jacaard indexes are
shown in Table S6. We observed that MISKmeans (BioCarta) and MSKM are more
robust than ISKmeans (BioCarta) in terms of feature selection and clustering accuracy.

3.3.3 Cross-Validation

We performed threefolds cross-validation to evaluate the prediction performance of
these methods. To be specific, we roughly split each study into 2/3 training dataset and
1/3 testing dataset. We performed MISKmeans (BioCarta), ISKmeans (BioCarta) and
MSKM in the training dataset, respectively, such that approximately 1000 features
are selected for each method. Then we performed weighted Kmeans on the testing
dataset using the selected features. The resulting clustering assignment was compared
to the underlying truth using ARI by averaging the results from the threefolds. The
result (Table S7) showed again that MISKmeans (BioCarta) and MSKM are better
than ISKmeans (BioCarta) in terms of prediction accuracy.
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4 Discussion and Conclusion

Many diseases are heterogeneous, with many subtypes that differ by response to treat-
ment, survival and biological pathways. Disease subtype discovery is an essential step
in delivering personalized medicine. Subtype identification is usually labor intensive
and requires combined expertise from oncologists and pathologists. Recently subtype
discovery via omics data has become a popular approach, but still, reproducibility and
cross-validation are big issues due to the heterogeneity of different cohorts and types of
omics data. Hence in this manuscript, we propose two-way omics data integration via
combining multi-cohort, multi-omics data and prior biological knowledge, which is
practical and appealing since abundant omics datasets are available in public databases
and repositories. Disease subtyping via two-way omics data integration conceptually
generates the most comprehensive and reliable subtype definitions. The superior per-
formance has been demonstrated in the multi-cohort and multi-omics breast cancer
dataset and leukemia dataset. The proposed method also has demonstrated better per-
formance compared with MSKM and ISKmeans.

MISKmeans has the following innovations. Firstly, this paper is among the first
to propose the concept for simultaneous multi-cohort and multi-omics data integra-
tion and incorporating established biological knowledge in subtype discovery field.
Meta-analytic framework of disease subtype analysis andmulti-omics integrative clus-
tering analysis are powerful approaches to identify disease subtypes; our proposed
MISKmeans closes the literature gap between them and provides the most compre-
hensive characterization of disease subtypes. Secondly, the prior biological knowledge
can be incorporated via the overlapping group lasso penalty. Fully accounting for the
inter-omics regulatory relationship and external biological information increases inter-
pretation of feature selections. Thirdly, the optimization of the objective function is
very challenging since it involves iteratively updating weight, clustering assignment
and pattern matching. It is solved by adopting the ADMMs.

MISKmeans can also accommodate missing data. The first type of missingness is
on the study level, in which one type of omics profile for a particular study is totally
missing. In this scenario, we can revise Eq. 4 to remove the contribution of the type
of omics profile for the particular study and reweigh the contribution of other studies.
The MISKmeans algorithm still leads to valid subtyping results based on the rest of
omics profile. The second type of missingness is within one type of omics profile (e.g.,
some samples are missing for certain genes within one type of omics profile). This
won’t affect the effectiveness of MISKmeans since Eq. 4 only depends on BCSS and
total sum of square (TSS), which are still computable.

Our omics integration framework can be extended toward different distancemetrics
for other types of omics data. For example, the Bray–Curtis dissimilarity can be used
for count data, and Jaccard distance can be used for binary variables. A common
penalty γ was adopted for all omics types in Eqs. 3 and 4. Since each feature is
standardized by TSS so its separation ability is directly comparable, which allows a
fair competition between different omics types. However, if one of the two types of
data is of lower quality or has a much smaller number of measured features, such
penalty design may be in favor of the features of better quality and the omics type with
larger number of measured features. In order to circumvent this issue, users can further
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extend themethod and introduce an omics type specific penalty γt ,where t is the omics
type index. By tuning γt , users will have the flexibility to incorporate some subjective
beliefs into the MISKmeans objective function such that the resulting subtypes won’t
be dominated by certain omics types. For example, the users can set equal γt if they
want equal contribution of the different omics types. Or set γt proportional to the
number of measured features of each omics type, in order to penalize more on the
omics type with larger number of input features.

The computing for MISKmeans can be decomposed as three components based on
the optimization procedure: weighted Kmeans, pattern matching and weight updating.
Firstly, the convergence of weighted Kmeans is fast, which is a particular version of
the classification EM algorithm. Secondly, the pattern matching complexity is reduced
from (K !)S−1 to S(S−1)K !/2 by caching intermediate results, which make moderate
scale subtype analysis more feasible. Thirdly, we adopt ADMM to perform weight
updating via adaptive augmented Lagrange parameters, which makes ADMM con-
verge much faster. We further use C++ inside R software to accelerate ADMM. In
fact, it will only take about 0.5h for MISKmeans when applying to the breast cancer
example with in total 16,456 features, 7989 groups, 5 subtypes and 1765 samples
across two cohorts. Note that the computing is done on a regular computer with a
single AMD Opteron(tm) Processor (1.4GHz).

However, MISKmeans may suffer the limitation of scalability. For example, when
K is very large (e.g., K = 10 and S = 2), the matching complexity will still go
to S(S − 1)K !/2 = 3, 628, 800, which will be a big burden for both memory and
computing time.

The current clustering methodology for two-way horizontal and vertical omics
integration framework is based on Kmeans algorithm. Such framework can also be
based on other clusteringmethods, includingGaussianmixturemodels, Bayesian non-
parametric methods, etc. The Kmeans based methods usually have good performance
when the underlying clusters do not overlap. However, when the underlying clus-
ters overlap, Gaussian mixture model-based methods may be expected to outperform
Kmeans based methods. The idea of meta-analytic multi-omics data integration can
be further extended to other aspects of statistical genomics, such as classification,
association, dimensional reduction and network analysis, to generate a better under-
standing and interpretation of complex omics datasets. Since the current paper focused
on the clustering algorithm in order to identify disease subtypes, we didn’t consider
the complex relationship between different layers of omics data in our simulation. For
example, methylation levels in promoter regions are found negatively correlated with
gene expression levels [3]; and methylation levels in gene body are found positively
correlated with gene expression levels [23,24]. However, these inter-omics relation-
ship should be consider in simulations when the goal is to identify associations or
causal relationships between different layer of omics data.
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