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INTEGRATIVE SPARSE K-MEANS WITH OVERLAPPING
GROUP LASSO IN GENOMIC APPLICATIONS FOR

DISEASE SUBTYPE DISCOVERY

BY ZHIGUANG HUO1 AND GEORGE TSENG1

University of Pittsburgh

Cancer subtypes discovery is the first step to deliver personalized
medicine to cancer patients. With the accumulation of massive multi-level
omics datasets and established biological knowledge databases, omics data
integration with incorporation of rich existing biological knowledge is es-
sential for deciphering a biological mechanism behind the complex diseases.
In this manuscript, we propose an integrative sparse K-means (IS-Kmeans)
approach to discover disease subtypes with the guidance of prior biological
knowledge via sparse overlapping group lasso. An algorithm using an al-
ternating direction method of multiplier (ADMM) will be applied for fast
optimization. Simulation and three real applications in breast cancer and
leukemia will be used to compare IS-Kmeans with existing methods and
demonstrate its superior clustering accuracy, feature selection, functional an-
notation of detected molecular features and computing efficiency.

1. Introduction. While cancer has been thought to be a single type of dis-
ease, increasing evidence from modern transcriptomic studies have suggested
that each specific cancer may consist of multiple subtypes, with different dis-
ease mechanisms, survival rates and treatment responses. Cancer subtypes have
been extensively studied, including in leukemia [Golub et al. (1999)], lymphoma
[Rosenwald et al. (2002)], glioblastoma [Parsons et al. (2008); Verhaak et al.
(2010)], breast cancer [Lehmann et al. (2011); Parker et al. (2009)], colorec-
tal cancer [Sadanandam et al. (2013)] and ovarian cancer [Tothill et al. (2008)].
These subtypes usually have strong clinical relevance since they show differ-
ent outcome, and might be responsive to different treatments [Abramson et al.
(2015)]. However, single cohort/single omics (e.g., transcriptome) analysis suf-
fers from sample size limitation and reproducibility issues [Simon et al. (2003);
Simon (2005); Domany (2014)]. Over the years, large amount of omics data
are accumulated in public databases and depositories, for example, The Can-
cer Genome Atlas (TCGA) http://cancergenome.nih.gov, Gene Expression Om-
nibus (GEO) http://www.ncbi.nlm.nih.gov/geo/, Sequence Read Archive (SRA)
http://www.ncbi.nlm.nih.gov/sra, just to name a few. These datasets provided un-
precedented opportunities to reveal cancer mechanisms via combining multiple
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cohorts or multiple-level omics data types (a.k.a. horizontal omics meta-analysis
and vertical omics integrative analysis; see below) [Tseng, Ghosh and Feingold
(2012)]. Omics integrative analysis has been found successful in many applica-
tions: (e.g., breast cancer [Koboldt et al. (2012)], stomach cancer [Bass et al.
(2014)]). On the other hand, a tremendous amount of biological information has
been accumulated in public databases. Proper usage of these prior information
(e.g., pathway information and miRNA targeting gene database) can greatly guide
the modeling of omics integrative analysis.

In the literature, researchers have applied various types of clustering methods
for high-throughput experimental data (e.g., microarray) to identify novel disease
subtypes. Popular methods include hierarchical clustering [Eisen et al. (1998)],
K-means [Dudoit and Fridlyand (2002)], mixture model-based approaches [Xie,
Pan and Shen (2008); McLachlan, Bean and Peel (2002)] and nonparametric ap-
proaches [Qin (2006)], for analysis of single transcriptomic study. Resampling
and ensemble methods have been used to improve stability of the clustering anal-
ysis [Kim et al. (2009); Swift et al. (2004)] or to pursue tight clusters by leaving
scattered samples that are different from major clusters [Tseng (2007); Tseng and
Wong (2005); Maitra and Ramler (2009)]. Witten and Tibshirani (2010) proposed
a sparse K-means algorithm that can effectively select gene features and perform
sample clustering simultaneously. To extend single-study techniques towards inte-
gration of multiple omics data sets, Tseng, Ghosh and Feingold (2012) categorized
omics data integration into two major types: (A) horizontal omics meta-analysis
and (B) vertical omics integrative analysis. For horizontal meta-analysis, multiple
studies of the same omics data type (e.g., transcriptome) from different cohorts are
combined to increase sample size and statistical power, a strategy often used in
differential expression analysis [Ramasamy et al. (2008)], pathway analysis [Shen
and Tseng (2010)] or subtype discovery [Huo et al. (2016)]. In contrast, vertical
integrative analysis aims to integrate multi-level omics data from the same patient
cohort (e.g., gene expression data, genome-wide profiling of somatic mutation,
DNA copy number, DNA methylation or microRNA expression from the same set
of biological samples [Richardson, Tseng and Sun (2016)]). In this paper, we focus
on vertical omics integrative analysis for disease subtype discovery. Several meth-
ods for this purpose have been proposed in the literature. Lock and Dunson (2013)
fitted a finite Dirichlet mixture model to perform Bayesian consensus clustering
that allows common clustering across omics types as well as omics-type-specific
clustering. The model, however, does not perform proper feature selection, and
thus is not suitable for high-dimensional omics data. Shen, Olshen and Ladanyi
(2009) proposed a latent variable factor model (namely iCluster) to cluster cancer
samples by integrating multi-omics data. The method does not incorporate prior
biological knowledge and requires extensive computing due to EM algorithm with
large matrix operation. We will use the popular iCluster method as the baseline
method to compare in this paper.
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The central question we ask in this paper is: “Can we identify cancer subtypes
by simultaneously integrating multi-level omics datasets and/or utilizing existing
biological knowledge to increase accuracy and interpretation?” Several statistical
challenges will arise when we attempt to achieve this goal: (1) If multi-level omics
data are available for a given patient cohort, what kind of method is effective to
achieve robust and accurate disease subtype detection via integrating multi-omics
data? (2) Since only a small subset of intrinsic omics features are relevant to the
disease subtype characterization, how can we perform effective feature selection in
the high-dimensional integrative analysis? (3) With the rich biological information
(e.g., targeted genes of each miRNA or potential cis-acting regulatory mechanism
between copy number variation, methylation and gene expression), how can we
fully utilize the prior information to guide feature selection and clustering? In this
paper, we propose an integrative sparse K-means (IS-Kmeans) approach by ex-
tending the sparse K-means algorithm with overlapping group lasso technique to
accommodate the three goals described above. The lasso penalty in the sparse K-
means method allows effective feature selection for clustering. In the literature,
(nonoverlapping) group lasso [Yuan and Lin (2006)] has been developed in a re-
gression setting to encourage features of the same group to be selected or excluded
together. The approach, however, has two major drawbacks: (1) it does not allow
sparsity within groups (i.e., a group of features are either all selected or all ex-
cluded), and (2) the penalty function does not allow overlapping groups. For the
first issue, Simon et al. (2013) proposed a sparse group lasso with both an l1 lasso
penalty and a group lasso penalty to allow sparsity within groups while the ap-
proach does not allow overlapping groups. For the latter issue, overlapping group
information from biological knowledge is frequently encountered in many applica-
tions. In genomic application, for example, the targeted genes of two miRNAs are
often overlapped or two pathways may contain overlapping genes. Jacob, Obozin-
ski and Vert (2009) proposed a duplication technique to allow overlapping groups
in regression setting while the approach does not allow sparsity within groups.
In this paper, we attempt to simultaneously overcome both aforementioned dif-
ficulties in a clustering setting, which brings optimization challenges beyond the
duplication technique by Jacob, Obozinski and Vert (2009) and the sparse group
lasso optimization by Simon et al. (2013). In our proposed IS-Kmeans method, we
will develop a novel reformulation of l1 lasso penalty and overlapping group lasso
penalty so that a fast optimization technique using alternating direction method of
multiplier (ADMM) [Boyd et al. (2011)] can be applied (see Section 3.4.1).

The rest of the paper is structured as following. Section 2 gives a motivat-
ing example. Section 3 establishes the method and optimization procedure. Sec-
tions 4.1–4.3 comprehensively compares the proposed method with the popular
iCluster method using simulation and two breast cancer applications on multi-
level omics data. Section 4.4 provides another type of IS-Kmeans application of
pathway-guided clustering on single transcriptomic study. Section 5 includes the
final conclusion and discussion.
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2. Motivating example. Figure 1(A) shows a clustering result using single
study sparse K-means (detailed algorithm see Section 3.1) on the mRNA, methy-
lation and copy number variation (CNV) datasets separately from 770 samples in
TCGA. As expected, they generate very different disease subtyping without reg-
ulatory inference across mRNA, methylation and CNV. In this example, single
study sparse K-means fails to consider that different omics features belonging to
the same genes are likely to contain cis-acting regulatory mechanisms related to the
disease subtypes. Figure 1(B) combines the three datasets to perform IS-Kmeans.
The IS-Kmeans generates a single disease subtyping and takes into account of
the prior regulatory knowledge between mRNA, methylation and CNV. The prior
knowledge can also be a pathway database (e.g., KEGG, BioCarta and Reactome)
or knowledge of miRNA targets prediction databases (e.g., PicTar, TargetScan,
DIANA-microT, miRanda, rna22 and PITA) [Witkos, Koscianska and Krzyzosiak
(2011); Fan and Kurgan (2015)]. Incorporating such prior information of feature
grouping increases statistical power and interpretation. Figure 1(C) shows a simple
example of such group prior knowledge. Pathway J1 includes mRNA1, mRNA2,
mRNA3 and mRNA6 while pathway J2 includes mRNA3, mRNA4, mRNA5 and
mRNA7. Note that mRNA3 appears in both pathway J1 and J2, which requires
our algorithm to allow overlapping groups. Our goal is to develop a sparse cluster-
ing algorithm integrating multi-level omics datasets and the aforementioned prior
regulatory knowledge by overlapping group lasso. The algorithm is also suitable

FIG. 1. (A) Clustering of mRNA (upper heatmap) CNV (middle heatmap) and methylation (lower
heatmap) profiles separately results in different five clusters of breast cancer subtypes (repre-
sented by color bars of five colors). (B) IS-Kmeans merges mRNA (upper heatmap) CNV (middle
heatmap) and methylation (lower heatmap) and perform sample clustering. Inter-omics biologi-
cal knowledge is also taken into account by overlapping group lasso. (C) An illustrating example
of design of overlapping group lasso penalty term �(z) to incorporate prior knowledge of path-

way information. Here, �(z) = √
1 + 1 + 1/2 + 1

√
z2

1 + z2
2 + 1/2 × z2

3 + z2
6 +√

1/2 + 1 + 1 + 1 ×√
1/2 × z2

3 + z2
4 + z2

5 + z2
7.
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for single omics dataset with incorporating prior overlapping pathway information
(see the leukemia examples in Section 4.4).

3. Method.

3.1. K-Means and sparse K-means. Consider Xjq the gene expression inten-
sity of gene j and sample q . The K-means method [MacQueen (1967)] targets to
minimize the within-cluster sum of squares (WCSS):

(3.1) min
C

J∑
j=1

WCSSj (C) = min
C

J∑
j=1

K∑
k=1

1

nk

∑
p,q∈Ck

dpq,j ,

where K is the number of clusters, J is the number of genes (features), C =
(C1,C2, . . . ,CK) denotes the clustering result containing partitions of all samples
into K clusters, nk is the number of samples in cluster k and dpq,j = (Xjp −Xjq)

2

denotes the squared Euclidean distance of gene j between sample p and q . One
drawback of K-means is that it assumes all J features with equal weights in the
distance calculation. In genomic applications, J is usually large but biologically
only a small subset of genes may contribute to the sample clustering. Witten and
Tibshirani (2010) tackled this problem by proposing a sparse K-means approach
with lasso regularization on gene-specific weights. They found that direct appli-
cation of lasso regularization to equation (3.1) will result in a meaningless null
solution. Instead, they utilized the fact that minimizing WCSS is equivalent to max-
imizing between-cluster sum of squares (BCSS) since WCSS and BCSS add up to
a constant value of total sum of squares [TSSj = BCSSj (C) + WCSSj (C)]. The
optimization in equation (3.1) is equivalent to

(3.2) max
C

J∑
j=1

BCSSj (C) = max
C

J∑
j=1

[
1

n

∑
p,q

dpq,j −
K∑

k=1

1

nk

∑
p,q∈Ck

dpq,j

]
.

The lasso regularization on gene-specific weights in equation (3.2) gives the fol-
lowing sparse K-means objective function:

max
C,z

J∑
j=1

zj BCSSj (C)

subject to ‖z‖2 ≤ 1,‖z‖1 ≤ μ,zj ≥ 0,∀j,

(3.3)

where zj denotes weight for gene j , C = (C1, . . . ,CK) is the clustering result, K

is the pre-estimated number of clusters and ‖z‖1 and ‖z‖2 are the l1 and l2 norm of
the weight vector z = (z1, . . . , zJ ). The regularization shrinks most gene weights
to zero and μ is a tuning parameter to control the number of nonzero weights (i.e.,
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the number of intrinsic genes for subtype characterization). This objective function
can be rewritten in its Lagrangian form:

min
C,z

−
J∑

j=1

zj BCSSj (C) + γ ‖z‖1

subject to ‖z‖2 ≤ 1, zj ≥ 0,∀j,

3.2. Integrative sparse K-means (IS-Kmeans). We extend the sparse K-
means objective function to group structured sparse K-means. Here, we consider
J to be the total number of features combing all levels of omics datasets. In order
to make features of different omics data types on the same scale and comparable,
we normalized BCSSj by TSSj and denote

Rj(C) = BCSSj (C)

TSSj

.

We put the overlapping group lasso penalty term �(z) in the objective function:

min
C,z

−
J∑

j=1

zjRj (C) + γα‖z‖1 + γ (1 − α)�(z)

subject to ‖z‖2 ≤ 1, zj ≥ 0,

(3.4)

where γ is the penalty tuning parameter controlling the numbers of nonzero
features, α ∈ [0,1] is a term controlling the balance between individual feature
penalty and group feature penalty. If α = 1, there is no group feature penalty term
and the objective function is equivalent to sparse K-means objective function after
standardizing each feature. If α = 0, there is no individual feature penalty and only
group feature penalty exists. The overlapping group lasso penalty term is defined
as

�(z) = ∑
1≤g≤G0

wg‖mg ◦ z‖2,

where G0 is the number of (possibly overlapping) feature groups from prior bi-
ological knowledge, wg ∈ R is the group weight coefficient for group g, mg =
(mg1, . . . ,mgJ ) is the design vector of the gth feature group and ◦ represents
Hadamard product. The design of wg and mg is discussed in Section 3.3. Note
that features with no group information are also treated as a group by itself (a
group only contains a feature); such a design is to avoid bias towards a feature
with no group information by receiving no penalization. The feature groups can
either come from existing biological databases (e.g., pathway or miRNA target
database), or from basic biological cis-regulatory knowledge (CNV and methy-
lation features in the neighborhood of a nearby gene region). The first term in
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equation (3.4) encourages large weights for features with strong clustering separa-
bility. The second term is an l1 norm lasso penalty to encourage sparsity. Finally,
�(z) serves as overlapping group lasso to encourage features in the prior knowl-
edge groups to be selected simultaneously (or discarded together). The intuition
of group lasso is that if we transform the Lagrange form of �(z) to its constraint
form, it becomes an elliptic constraint and features of the same group are preferred
to be selected together [Yuan and Lin (2006); Jacob, Obozinski and Vert (2009)].
The combination of l1 norm lasso penalty and overlapping group lasso penalty
�(z) serves to achieve a sparse feature selection and also encourages (but does not
force) features of the same group to be selected together.

REMARK. Since different types of omics datasets may have different value
ranges and distributions, additional normalization may be needed in the prepro-
cessing. For example, the commonly-used beta values from methy-seq (defined
as “methylation counts”/“total counts”) represent the proportions of methylation
and range between 0 and 1. A logit transformation to so-called M-values is
closer to Gaussian distribution and is more suitable to integrate with other omics
data. Similarly, log-transformation of expression intensities from microarray, log-
transformation of RPKM/TPM (summarized expression values) from RNA-seq
and log-ratio values of CNV values from SNP arrays have been shown to be
roughly Gaussian distributed and are proper for multi-omics integration. Another
possibility is by replacing Euclidean distance to an appropriate distance measure-
ment (e.g., Gower’s distance for binary categorical and ordinal data, and Bray–
Curtis dissimilarity for count data). Under this scenario, equation (3.4) remains
valid under such modification and we only need to incorporate partition around
medoids (PAM) [Kaufman and Rousseeuw (1987)] instead of K-means in the op-
timization procedure in Section 3.4.1. However, heterogeneity of different distance
measurement may require extra different sparsity penalties and this is beyond con-
sideration in this paper.

3.3. Design of overlapping group lasso penalty. In this section, we discuss and
justify the design of overlapping group lasso penalty for wg and mg . We denote
by Jg as the collection of features in group g (1 ≤ g ≤ G0) and define frequency
of feature j appearing in different groups: h(j) = ∑

1≤g≤G0
I{j ∈ Jg}. We also

define the intrinsic feature set I (i.e., features that contribute to the underlying true
sample clustering) and the nonintrinsic feature set Ī . We first state an “unbiased
feature selection” principle under a simplified situation:

DEFINITION 3.1 (“Unbiased Feature Selection” principle). Suppose equal
separation ability in all intrinsic features I = {j : Rj = R > 0} and no separation
ability in nonintrinsic features Ī = {j : Rj = 0} under the true clustering label.
The proposed overlapping group lasso design (wg and mg) is said to satisfy the
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“unbiased feature selection” principle if under equation (3.4), it generates equal
weights zj = 1/

√|I| for j ∈ I and zj = 0 for j ∈ Ī given any prior knowledge of
feature groups Jg , 1 ≤ g ≤ G0.

The theorem below states an overlapping group lasso penalty design that satis-
fies the “unbiased feature selection” principle when all features are intrinsic fea-
tures (i.e., Ī = φ).

THEOREM 3.1. Consider �(z) = ∑
1≤g≤G0

wg‖mg ◦ z‖2 and mg = (mg1,

. . . ,mgj , . . . ,mgJ ) in equation (3.4). Suppose equal separation ability for all
features R1 = · · · = RJ = R (Ī = φ) and further assume R > γ . The design of
mgj = I{j ∈ Jg}/√h(j), wg =

√∑
j∈Jg

1/h(j) satisfies the “unbiased feature

selection” principle such that optimum solution of z from equation (3.4) generates
zj = 1/

√
J , ∀j .

Theorem 3.1 gives a design of overlapping group lasso penalty such that given
equal separation ability for all features, the feature selection is not biased by the
prior group knowledge. When all the groups are nonoverlapping, h(j) = 1, ∀j ,
then

�(z) = ∑
0≤g≤G0

(√
|Jg|

√ ∑
j∈Jg

z2
j

)
,

where |Jg| is number of features in group Jg , which is the nonoverlapping
group lasso penalty [Yuan and Lin (2006)]. However, this weight design (wg =√∑

j∈Jg
1/h(j)) is not applicable when the underlying intrinsic feature set is

sparse (i.e., Ī 	= φ). If there are many nonintrinsic features inside group g, the
intrinsic features in group g is over penalized since wg is inflated by the contri-
bution of nonintrinsic features. Therefore, we propose the following overlapping
group lasso penalty and show that the design satisfies the “unbiased feature selec-
tion” principle when the intrinsic feature set is sparse:

mgj = I{j ∈ Jg}/
√

h(j),

wg =
√ ∑

j∈(Jg∩I)

1/h(j).
(3.5)

THEOREM 3.2. Suppose the intrinsic feature set I = {j : Rj = R > 0} and
the nonintrinsic feature set Ī = {j : Rj = 0}. We further assume R > γ . The
overlapping group lasso penalty in equation (3.5) satisfies the “unbiased feature
selection” principle such that the optimum solution of z from equation (3.4) is
zj = 1/

√|I| for j ∈ I and zj = 0 for j ∈ Ī .
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Note that we take into account both the nonintrinsic features and the intrinsic
features in the penalty design in equation (3.5). Only intrinsic features contribute
to the group weight coefficient wg . The design vector mg remains the same as
nonoverlapping group lasso. In practice, the intrinsic feature set I is unknown.
We follow the coefficient design of adaptive lasso [Zou (2006)] and adaptive
group lasso [Huang, Horowitz and Wei (2010)], which have been discussed in
the literature and they maintain a consistency property under certain mild condi-
tions. Specifically, we set α = 1 in equation (3.4) where only individual feature
penalty is considered and use the solution ẑ to define estimated intrinsic feature

set Î = {j : ẑj > 0} and nonintrinsic feature set ˆ̄I = {j : ẑj = 0} for equation
(3.5). In the example of Figure 1(C), suppose all 7 features are intrinsic genes.
Pathway J1 contains mRNA1, mRNA2, mRNA3 and mRNA6, reflecting prior
knowledge from pathway databases. Similarly, group for pathway J2 contains
mRNA3, mRNA4, mRNA5 and mRNA7. As a result, m1 = (1,1,1/2,0,0,1,0)

and m2 = (0,0,1/2,1,1,0,1) and

�(z) =
√

1 + 1 + 1/2 + 1
√

z2
1 + z2

2 + 1/2 × z2
3 + z2

6

+
√

1/2 + 1 + 1 + 1
√

1/2 × z2
3 + z2

4 + z2
5 + z2

7.

Note that in our example mRNA3 is shared by pathway groups J1 and J2, repre-
senting overlapping group lasso penalty.

3.4. Optimization. In this section, we discuss major issues for optimization
of equation (3.4). First, we introduce transformation of equation (3.4) such that
l1 norm penalty can be absorbed in l2 norm group penalty. Second, we introduce
the optimization procedure for the proposed objective function. Third, we discuss
how to use ADMM to optimize the weight term, which is critical and a difficult
problem since it involves both the l1 norm penalty and overlapping group lasso
penalty. Last, we discuss the stopping rule for the optimization.

3.4.1. Reformulation and iterative optimization. We use the fact that γα‖z‖1
can be rewritten as γα‖z‖1 = γα

∑J
j=1 ‖zj‖2 and zj = (0, . . . , zj , . . . ,0)� with

only the j th element nonzero. In other words, the l1 norm penalty of a single
feature can be deemed as group penalty with only one feature within a group.
Therefore, we can rewrite objective function equation (3.4) as

(3.6) min
C,z

−
J∑

j=1

zjRj (C) +
J∑

j=1

‖γαφj ◦ z‖2 + ∑
0≤g≤G0

∥∥γ (1 − α)mg ◦ z
∥∥

2

s.t. ‖z‖2 ≤ 1, zj ≥ 0, where φj = (φj 1
, . . . ,φj J

), φj i
= 1 if j = i and φj i

= 0
if j 	= i. We combine J and G0 groups and the combined groups are of size G =
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J + G0. Define

βg =
{
γαφj if 1 ≤ g ≤ J,

γ (1 − α)mg if J + 1 ≤ g ≤ G.

Therefore, we can rewrite objective function equation (3.6) as

min−R(C)�z + ∑
1≤g≤G

‖βg ◦ z‖2

subject to ‖z‖2 ≤ 1, zj ≥ 0,

(3.7)

where R(C) = (R1(C), . . . ,RJ (C))�. The optimization procedure are outlined
below:

1. Initialize weight z using the original sparse K-means method without the
group lasso term.

2. Given weight z, use weighted K-means to update cluster labels C [R is the
normalized WCSS so minimizing −R(C)�z is essentially weighed K-means].
This is a nonconvex problem so multiple random starts are recommended to al-
leviate local minimum problem.

3. Given the cluster label C, R is fixed so optimizing the objective function is
a convex problem with respect to solving weight z. We use ADMM in the next
subsection to update weight z.

4. Iterate 2 and 3 until converge.

The detailed algorithm for Step 3 is outlined in Section 3.4.2 and the stopping rules
of Step 3 and Step 4 are described in Section 3.4.3.

3.4.2. Update weight using ADMM. Alternating direction method of multi-
plier (ADMM) [Boyd et al. (2011)] is ideal for solving the optimization in equa-
tion (3.7). We introduce an auxiliary variable xg and write down the augmented
Lagrange:

(3.8) min−R(C)�z+ ∑
1≤g≤G

‖xg‖2 + ∑
1≤g≤G

{
y�
g (xg −βg ◦z)+ ρ

2
‖xg −βg ◦z‖2

2

}

s.t. ‖z‖2 ≤ 1, zj ≥ 0 and xg = βg ◦ z. This problem [equation (3.8)] is clearly
equivalent to the original objective function [equation (3.7)], since for any feasible
z the terms added to the objective is zero. ρ is the augmented Lagrange parame-
ter which will be discussed in more detail in Section 3.4.4. Here, the augmented
Lagrange is minimized jointly with respect to the two primal variables xg , z and
the dual variable yg . In ADMM, xg , z and yg are updated in an alternating or se-
quential fashion [Boyd et al. (2011)], and thus the optimization problem can be
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decomposed into three parts. Given (xg , z and yg), the new iteration of (x+
g , z+

and y+
g ) in equation (3.8) is updated as in the following:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x+
g = arg min

xg
‖xg‖2 + y�

g xg + ρ

2
‖xg − βg ◦ z‖2

2,

z+ = arg min
z

−∑
zjRj − ∑

1≤g≤G
y�
g (βg ◦ z) + ρ

2

∥∥x+
g − βg ◦ z

∥∥2
2

subject to ‖z‖2 ≤ 1, zj ≥ 0,

y+
g = yg + ρ

(
x+
g − βg ◦ z+)

,

where the updating equation of x+
g and z+ are derived from equation (3.8) and

the the updating equation of y+
g is imbedded in ADMM procedure [Boyd et al.

(2011)]. We can derive close form solution for xg part and z part by the Karush–
Kuhn–Tucker (KKT) condition. Details are given in the Appendix:

1. Define ag = βg ◦ z − yg

ρ
, we have x+

g = (1 − 1
ρ‖ag‖2

)+ag , where (·)+ =
max(0, ·).

2. Define bj = ∑
1≤g≤G ρβ2

gj and cj = ∑
1≤g≤G(ρx+

gj +ygj )◦βgj , where βg =
(βg1,βg2, . . . ,βgJ )�, xg = (xg1,xg2, . . . ,xgJ )� and yg = (yg1,yg2, . . . ,ygJ )�.

The solution is given as following: we define fj (u) = (
Rj+cj

bj+2u
)+. If

∑
j fj (u)2 < 1,

z+
j = fj (0) ∀j . Otherwise, z+

j = fj (u) ∀j and u is selected s.t. ‖z+‖2 = 1.

3.4.3. Stopping rules. We have two algorithms which require stopping rules.
For ADMM in the optimization of Step 3, the primal residual of group g in
ADMM iteration t is: rt

g = xt
g − βg ◦ zt , and the l2 norm of primal residual is

rt =
√∑

g ‖rt
g‖2

2. The l2 norm of dual residual is: vt =
√∑

g ‖βg ◦ (zt − zt−1)‖2
2.

We set our ADMM stopping criteria such that simultaneously rt < 10−10 and vt <

10−10. For convergence of IS-Kmeans, we iterate weighted K-means (Step 2) and

updating weight by ADMM (Step 3) until converge. (i.e.,
∑J

j=1 |z(c)
j −z

(c−1)
j |∑J

j=1 |z(c−1)
j | < 10−4),

where z
(c)
j represents the zj estimate in the cth iteration of the IS-Kmeans algo-

rithm.

3.4.4. Augmented Lagrangian parameter ρ. Augmented Lagrangian parame-
ter ρ controls the convergence of ADMM. In fact, large value of ρ will lead to
small primal residual by placing a large penalty on violations of primal feasibility.
And conversely, small value of ρ tend to produce small dual residual, but it will re-
sult in a large primal residual by reducing the penalty on primal feasibility [Boyd
et al. (2011)]. An adaptive scheme of varying ρ to balance the primal and dual
residual has been proposed [He, Yang and Wang (2000); Wang and Liao (2001)]



1022 Z. HUO AND G. TSENG

which greatly accelerates ADMM convergence in practice:

ρt+1 =

⎧⎪⎪⎨
⎪⎪⎩

τ incrρt if
∥∥rt

∥∥
2 > η

∥∥vt
∥∥

2,

ρt/τ decr if
∥∥vt

∥∥
2 > η

∥∥rt
∥∥

2,

ρt otherwise.

We set η = 10 and τ incr = τ decr = 2. The intuition behind this scheme is to control
both primal and dual residuals for converging to zero simultaneously.

3.5. Select tuning parameters. In the objective function of IS-Kmeans, the
number of clusters K is pre-specified. The issue of estimating K has been
widely discussed in the literature and has been well recognized as a difficult and
data-dependent problem. [Milligan and Cooper (1985); Kaufman and Rousseeuw
(1990)]. Here, we suggest the number of clusters to be estimated in each study
separately using conventional methods such as prediction strength [Tibshirani
and Walther (2005)] or gap statistics [Tibshirani, Walther and Hastie (2001)] and
jointly compared across studies (such that the numbers of clusters are roughly
the same for all studies) for a final decision before applying integrative sparse K-
means. Below we assume that a common K is pre-estimated for all omics datasets.

Another important parameter to be determined is α, which controls the balance
between individual feature penalty and overlapping group penalty. According to
equation (3.4), α = 1 means we only emphasize on individual feature penalty and
ignore overlapping group penalty. In this case, the IS-Kmeans is equivalent to
sparse K-means. α = 0 means we only emphasize the overlapping group penalty
and ignore the individual feature penalty. Simon et al. (2013) argued that there is
no theoretically optimal selection for α because selection of α relates to multiple
factors such as accuracy of prior group information and sparsity within groups. In
general, a large α (e.g., α = 0.95) is suitable when prior group information may not
be accurate or features within selected groups may be sparse. On the other hand, if
we expect mild sparsity within groups and high accuracy of prior group informa-
tion, a small α (e.g., α = 0.05) help select features by groups. In Section 4.1.2, we
have performed simulation of different level of prior group information accuracy
(θ = 1 and θ = 0.2) and found that α = 0.5 generates robust and high performance
results in the sensitivity analysis. As a result, we apply α = 0.5 throughout the
paper unless otherwise indicated.

The last tuning parameter is γ , which is the penalty coefficient. When γ is large,
we place large penalty on the objective function and end up with less selected
features. When γ is small, we put a small penalty and will include more features.
We follow and extend the gap statistic procedure [Tibshirani, Walther and Hastie
(2001)] to estimate γ :

1. For each feature in each omics type, randomly permute the gene expression
(permute samples). This creates a permuted data set X(1). Repeat for B times to
generate X(1),X(2), . . . ,X(B).
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FIG. 2. Selection of tuning parameter γ . This figure was from the simulated dataset in Section 4.1
with α = 0.5. x-axis represents tuning parameter γ . Red curve and left y-axis denote the corre-
sponding gap statistics. Black curve and right y-axis denote the corresponding number of selected
features. The blue dots (γ = 0.21) represent where the gap statistics is minimized, and the corre-
sponding number of selected feature is 1778.

2. For each potential tuning parameter γ , compute the gap statistics as below:

(3.9) Gap(γ ) = O(γ ) − 1

B

B∑
b=1

Ob(γ ),

where O(γ ) = −∑J
j=1 z∗

jRj (C
∗) is from observed data, where z∗,C∗ are the min-

imizer of the objective function in equation (3.4) given γ . Ob(γ ) is similar to O(γ )

but generated from permuted data X(b).
3. For a range of selections of γ , select γ ∗ such that the gap statistics in equa-

tion (3.9) is minimized.

Figure 2 shows an example of a simulated dataset that will be discussed in Sec-
tion 4.1. In this example, we used α = 0.5 for IS-Kmeans and the minimum gap
statistics corresponded to 1778 genes, which is very close to the underlying truth
1800. The gap statistics for α = 0.05,0.95,1 are plotted in supplementary mate-
rials [Huo and Tseng (2017), Figure S1] and they all provided adequate γ esti-
mation. In practice, calculating gap statistics from a chain of γ can be performed
efficiently by adopting a warm start for adjacent γ ’s. For example, after calculat-
ing O(γ1), the resulting weights can be used as an initial value for the next nearby
γ2 = γ1 + 
 to calculate O(γ2) in the optimization iteration for fast convergence.

4. Result. We evaluated integrative sparse K-means (IS-Kmeans) on simula-
tion datasets in Section 4.1, multiple-level omics applications using breast cancer
TCGA (combining mRNA expression, DNA methylation and copy number varia-
tion) and METABRIC (combining mRNA expression and copy number variation)
examples in Section 4.2 and 4.3, and a pathway-guided single transcriptomic appli-
cation in leukemia in Section 4.4. In the simulation, the underlying sample clusters
and intrinsic feature set were known and we demonstrated the better performance
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of IS-Kmeans compared to iCluster and sparse K-means by cluster accuracy, fea-
ture selection and computing time. For the TCGA and METABRIC application, the
underlying true clustering and intrinsic feature set were not known. We evaluated
the performance by clustering similarity using adjusted Rand index (ARI) [Hubert
and Arabie (1985)] with subtype definition by PAM50 [Parker et al. (2009)], cis-
regulatory groups, survival difference between clusters and computing time. In the
leukemia examples, the disease subtypes were defined by observable fusion gene
aberration. We evaluated the performance by clustering accuracy (ARI) and path-
way enrichment analysis on selected genes.

4.1. Simulation.

4.1.1. Simulation setting. To assess the performance of integrative sparse K-
means with different choices of α and compare to the original sparse K-means and
iCluster, we simulated K = 3 subtypes characterized by several groups of subtype
predictive genes in each of S = 2 omics datasets with 1 ≤ s ≤ S as the omics
dataset index (e.g., s = 1 represents gene expression and s = 2 represents DNA
methylation). The prior group information was imposed between groups of sub-
type predictive genes across omics datasets. These prior group information rep-
resent the possibility that a group of genes and DNA methylations might be co-
regulated. To best preserve the data nature of genomic studies, we also simulated
confounding variables, correlated gene structure and noninformative genes. Below
is the generative process:

(a) Subtype predictive genes (intrinsic feature set).

1. Denote by Nk is the number of subjects in subtype k (1 ≤ k ≤ 3). We
simulate N1 ∼ POI(40), N2 ∼ POI(40), N3 ∼ POI(30) and the number of sub-
jects is N = ∑

k Nk . Simulate S = 2 omics datasets, which share the samples
and subtypes. Specifically, we denote s = 1 to be the gene expression dataset
and s = 2 to be the DNA methylation dataset.

2. Simulate M = 30 feature modules (1 ≤ m ≤ M) for each omics dataset.
Denote nsm to be the number of features in omics dataset s and module m.
For each module in s = 1, sample n1m = 30 genes. For each module in s =
2, sample n2m = 30 methylations. Therefore, there will be of 1800 subtype
predictive features among two omics datasets.

3. Denote by μskm is the template gene expression (on log scale) of omics
dataset s (1 ≤ s ≤ S), subtype k (1 ≤ k ≤ 3) and module m (1 ≤ m ≤
M). Simulate the template gene expression μskm ∼ N(9,22) with constrain
maxp,q |μspm − μsqm| ≥ 1, where p, q denote two subtypes. This part defines
the subtype mean intensity for each module in all omics datasets. Note that
since in equation (3.4) we used Rj = BCSSj

TSSj
for standardization, performance

of the algorithm is robust to gene expression distribution (e.g., the Gaussian
assumption here).
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4. In order to tune the signal of the template gene expression, we intro-
duce a relative effect size f > 0, such that μ′

skm = (μskm − mink μskm)× f +
mink μskm. If f = 1, we do not tune the signal. If f < 1, we decrease the
signal and if f > 1, we amplify the signal.

5. Add biological variation σ 2
1 = 1 to the template gene expression and

simulate X′
skmi ∼ N(μ′

skm, σ 2
1 ) for each module m, subject i (1 ≤ i ≤ Nk) of

subtype k and omics dataset s.
6. Simulate the covariance matrix �mks for genes in module m, subtype

k and omics dataset s, where 1 ≤ m ≤ M , 1 ≤ k ≤ 3 and 1 ≤ s ≤ S. First
simulate �′

mks ∼ W−1(,100), where  = 0.5Insm×nsm + 0.5Jnsm×nsm , W−1

denotes the inverse Wishart distribution, I is the identity matrix and J is the
matrix with all elements equal 1. Then �mks is calculated by standardizing
�′

mks such that the diagonal elements are all 1’s.
7. Simulate gene expression levels of genes in cluster m as (X1skmi, . . . ,

Xnsmskmi)
� ∼ MVN(X′

skmi,�mks), where 1 ≤ i ≤ Nks , 1 ≤ m ≤ M , 1 ≤ k ≤
3 and 1 ≤ s ≤ S.

(b) Noninformative genes.

1. Simulate 5000 noninformative genes denoted by g (1 ≤ g ≤ 5000)
in each omics dataset. First, we generate the mean template gene expres-
sion μsg ∼ N(9,22). Then we add biological variance σ 2

2 = 1 to generate
Xsgi ∼ N(μsg, σ

2
2 ), 1 ≤ i ≤ Ns .

(c) Confounder impacted genes.

1. Simulate C = 2 confounding variables. In practice, confounding vari-
ables can be gender, race, other demographic factors or disease stage etc.
These will add heterogeneity to each study to complicate disease subtype dis-
covery. For each confounding variable c (1 ≤ c ≤ C), we simulate R = 10
modules in each omics dataset. For each of these modules rc (1 ≤ rc ≤ R),
sample number of genes nrc = 30. Therefore, totally 600 confounder impacted
genes are generated in each omics dataset. This procedure is repeated in all S

omics datasets.
2. For each omics dataset s (1 ≤ s ≤ S) and each confounding variable c,

sample the number of confounder subclass hsc = k. The N samples in omics
dataset s will be randomly divided into hsc subclasses.

3. Simulate confounding template gene expression μslrc ∼ N(9,22) for
confounder c, gene module r , subclass l (1 ≤ l ≤ hsc) and omics dataset s.
Similar to Step a5, we add biological variation σ 2

1 to the confounding tem-
plate gene expression X′

scrli ∼ N(μslrc, σ
2
1 ). Similar to Steps a6 and a7, we

simulate gene correlation structure within modules of confounder impacted
genes.

(d) Gene grouping information.
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1. We assume omics dataset s = 1 and s = 2 have prior group information
on subtype predictive gene modules. There are M = 30 modules in each omics
dataset.

2. Suppose subtype predictive genes in the mth module of the first omics
dataset are grouped with methylation features in the second omics dataset (to-
tally n1m + n2m = 30 + 30 = 60 features are in the same group). With proba-
bility 1 − θ (0 ≤ θ ≤ 1), each feature out of the 60 features will be randomly
replaced by a confounder impacted gene or noninformative gene. Note that the
same replaced feature can appear in multiple subtype predictive gene groups.
We set θ = 1 and 0.2 to reflect 100%, 20% accuracy of prior group informa-
tion.

4.1.2. Simulation result. For IS-Kmeans, the tuning parameter γ was selected
by gap statistics introduced in Section 3.5. Table 1 shows the result of gap statistics
to select the best γ in the simulation of α = 0.5, θ = 1. The smallest gap statistics
was selected at γ = 0.21 that correspond to selecting 1778 features, which was
close to the underlying truth. Similarly, gap statistics result for α = 1,0.95,0.05
are in the supplementary materials [Huo and Tseng (2017), Figure S1]. For simu-
lation, we generated two scenarios with relative effect size f = 0.6 and f = 0.8.
The complete simulation result of f = 0.6 is shown in Table 1 and the result for
f = 0.8 is in the supplementary materials [Huo and Tseng (2017), Table S1]. For

TABLE 1
Comparison table of simulation with relative effect size f = 0.6. We simulated B = 100 times and

calculated mean and standard deviation of each quantity. θ denotes the probability grouping
information is correct for each feature inside groups. α is the tuning parameter balancing the

emphasis between individual penalty and group penalty. For each method, we allow its own tuning
parameter selection method to optimize its performance

Time
θ Method α ARI Jaccard index AUC # features (mins)

1 IS-Kmeans

1 0.940 (0.239) 0.781 (0.202) 0.943 (0.138) 1465 0.44
0.95 0.940 (0.239) 0.791 (0.204) 0.945 (0.136) 1483 0.52
0.5 0.940 (0.239) 0.779 (0.202) 0.971 (0.084) 1420 0.56
0.05 0.940 (0.239) 0.946 (0.214) 0.997 (0.012) 1723 0.67

0.2 IS-Kmeans

1 0.940 (0.239) 0.781 (0.202) 0.943 (0.138) 1465 0.44
0.95 0.940 (0.239) 0.783 (0.202) 0.943 (0.138) 1469 0.57
0.5 0.940 (0.239) 0.602 (0.159) 0.943 (0.134) 1105 0.57
0.05 0.940 (0.239) 0.467 (0.096) 0.888 (0.111) 2824 1.2

iCluster 0.374 (0.323) 0.383 (0.274) 1239 26
Sparse Kmeans 1 0.312 (0.370) 0.105 (0.101) 896 0.12
Sparse Kmeans 2 0.361 (0.424) 0.204 (0.124) 2137 0.13
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iCluster and sparse K-means, we allowed them to choose their own optimum tun-
ing parameters. Note that sparse K-means was adopted to each individual omics
datatype. We used ARI [Hubert and Arabie (1985)] and Jaccard index [Jaccard
(1901)] to evaluate the clustering and feature selection performance. ARI calcu-
lated similarity of the clustering result with the underlying true clustering in sim-
ulation (range from −1 to 1 and 1 represents exact same partition compared to
the underlying truth). Jaccard index compared the similarity and diversity of two
feature sets, defined as the size of the intersection of two feature sets divided by
the size of the union of two feature sets (range from 0 to 1 and 1 represent identical
feature sets compared to the underlying truth). Clearly, IS-Kmeans outperformed
iCluster and individual study sparse K-means in terms of ARI and Jaccard in-
dex. IS-Kmeans and sparse K-means outperformed iCluster in terms of computing
time. Within IS-Kmeans, we compared feature selection in terms of area under the
curve (AUC) of ROC curve, which avoids the issue of tuning parameter selection.
When θ = 1 (representing the grouping information is accurate), smaller α (repre-
senting larger emphasize on grouping information) yielded better feature selection
performance in terms of AUC as expected. However, when θ = 0.2 (representing
many errors in the grouping information), smaller α yielded worse performance in
terms of AUC. Note that α = 0.5 gives robustness and performs well in the two
extremes of θ = 1 and θ = 0.2. In all applications below, we will apply α = 0.5
unless otherwise noted.

4.1.3. Data perturbation. We also evaluated the stability of the algorithm
against data perturbation. Instead of Gaussian distribution in the data generative
process, we utilized heavy tailed t-distribution to generate the expression. In the
simulation setting Step a3, the template gene expression is simulated from a t-
distribution with degree of freedom 3, location parameter 9 and scale parameter 2.
In Step a4, we set relative effect size f = 0.6 and f = 0.8, respectively. In Step a5,
X′

skmi is simulated from a t-distribution with degree of freedom 3, location param-
eter μ′

skm and scale parameter σ 2
1 . The result for data perturbation is in supplemen-

tary materials [Huo and Tseng (2017), Tables S5 and S6]. The resulting message
remains almost the same as the conclusion in Section 4.1.2. Therefore, our pro-
posed algorithm is robust against non-Gaussian or heavy tail distributions.

4.2. Integrating TCGA breast cancer mRNA, CNV and methylation. We
downloaded TCGA breast cancer (BRCA) multi-level omics datasets from TCGA
NIH official website. TCGA BRCA gene expression (IlluminaHiSeq RNAseqV2)
was downloaded on 04/03/2015 with 20,531 genes and 1095 subjects. TCGA
BRCA DNA methylation (Methylation450) was downloaded on 09/12/2015 with
485,577 probes and 894 subjects. TCGA BRCA copy number variation (BI gis-
tic2) was downloaded on 09/12/2015 with 24,776 genes and 1079 subjects. There
were 770 subjects with all these three omics data types. Features (probes/genes)



1028 Z. HUO AND G. TSENG

with any missing value were removed. For gene expression, we transformed the
FPKM value by log2(·+ 1), where 1 is a pseudo-count to avoid undefined log2(0),
such that the transformed value was on continuous scale. For methylation, the
Methylation450 platform provided beta value with range 0 < β < 1, where 0 rep-
resents un-methylated and 1 represents methylated. We transformed the beta value
to M value, which is defined by a logit transformation (M = log2[ β

1−β
]). There-

fore, methylation characterized by M value is on a continuous scale, similar to
mRNA and CNV. If multiple methylation probes matched to the same gene sym-
bol, we selected one methylation probe as a representative, which had the largest
average correlation with other methylation probes of the same gene symbol. We
ended up with 20,147 methylation probes with unique gene symbols.

We filtered out 50% low expression genes (unexpressed genes) and then 50%
low variance genes (noninformative genes). 50% low expression genes are genes
with the lowest 50% mean of gene expression across samples and 10,250 genes re-
mained after this filtering step. 50% low variance genes are genes with the lowest
50% variance of gene expression across samples and 5125 genes remained after
this filtering step. We obtained 4815 CNV features and 5035 methylation features
by matching to the 5125 gene symbols. The features from three different omics
datasets that shared the same cis-regulatory annotation (same gene symbol) were
grouped together to form 5125 feature groups. In this case, each group had one
mRNA gene expression, one CNV gene and/or one methylation probe. Each group
contained candidate multi-omics regulatory information because CNV and methy-
lation could potentially regulate mRNA expression. We applied IS-Kmeans with
α = 0.5, sparse K-means by directly merging three omics datasets together as well
as iCluster. Number of clusters K was set to be 5 since it was well established that
breast cancer has 5 subtypes by PAM50 definition [Parker et al. (2009)]. For a fair
comparison, we selected the tuning parameter for each method such that number
of selected features are close to 2000.

For evaluation purposes, we investigated three categories of groups among se-
lected features: G1, G2 and G3. G3 represents feature groups (gene symbol) where
all three types (mRNA, CNV and methylation) of features are selected. Simi-
larly, G2 represents feature groups (gene symbol) where only two types of fea-
tures are selected; G1 represents feature groups (gene symbol) where only one
type of feature is selected. We also compared the clustering result with PAM50
subtype definition in terms of ARI. The result is shown in Table 2. Clearly, IS-
Kmeans obtained more G2 and G3 features than sparse K-means and iCluster.
This is biologically more interpretable but not surprising since IS-Kmeans incor-
porated the multi-omics regulatory information and we expected feature of the
same group were encouraged to come out together. Besides, IS-Kmeans has higher
ARI compared to sparse K-means and iCluster, indicating the clustering result of
IS-Kmeans is closer to PAM50 definition than sparse K-means and iCluster. The
5-by-5 confusion table of IS-Kmeans clustering result and PAM50 subtypes is
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TABLE 2
Comparison of different methods using TCGA breast cancer (K = 5). G3 represents feature groups
(gene symbol) where all three types of features are selected. Similarly, G2 represents feature groups

(gene symbol) where only two types of features are selected; G1 represents feature groups (gene
symbol) where only one type of feature is selected. We also compared the clustering result with

PAM50 subtype definition in terms of ARI

Method ARI nfeature G1 G2 G3 Time

ISKmeans 0.379 2066 843 538 49 12.1 mins
SparseKmeans 0.332 2034 1466 284 0 6.85 mins
iCluster 0.272 2475 1725 375 0 3.91 hours

shown in supplementary materials [Huo and Tseng (2017), Table S3]. One should
note the the ARI for all these three methods are not very high. This could be
because PAM50 was defined by gene expression only and in our scenario we in-
tegrated multi-omics information. The heatmaps of IS-Kmeans result is shown in
Figure 1(B). In terms of computing time, IS-Kmeans is nearly 20 times faster than
iCluster.

4.3. Integrating METABRIC breast cancer mRNA and CNV. We tested the per-
formance of IS-Kmeans in another large breast cancer multi-omics (sample size
n = 1981) dataset METABRIC [Curtis et al. (2012)] with mRNA expression (llu-
mina HumanHT12v3) and CNV (Affymetrix SNP 6.0 chip) and survival informa-
tion. The datasets are available at https://www.synapse.org/#Synapse:syn1688369/
wiki/27311. There were originally 49,576 probes in gene expression. If multiple
probes matched to the same gene symbol, we selected the probe with the largest
IQR (interquartile range) to represent the gene. After mapping the probes to gene
symbols, we obtained 19,489 mRNA expression features and 18,538 CNV fea-
tures, which shared 1981 samples. After filtering out 30% low expression mRNA
based on mean gene expression across samples and then 30% low variance mRNA
based on variance of gene expression across samples, we ended up with 9504
mRNA features. We obtained 8696 CNV feature symbols by matching with mRNA
feature symbols. Therefore, we had totally 18,200 features and 9504 feature groups
(share the same gene symbol) among 1981 samples.

We applied IS-Kmeans with α = 0.5, sparse K-means by directly merging three
omics dataset together as well as iCluster. The number of clusters K was set to be
5 (same reason in TCGA). For a fair comparison, we selected the tuning param-
eter for each method such that number of selected features are close to 2000. For
evaluation purposes, we similarly defined two categories of groups among selected
features. G2 represents feature groups (gene symbol) where both types of features
are selected and G1 represents feature groups (gene symbol) where only one type
of feature is selected. We also compared the clustering result with PAM50 sub-
type definition in terms of ARI. The result is shown in Table 3. Similar to the

https://www.synapse.org/#protect kern -.1667emelax Synapse:syn1688369/wiki/27311
https://www.synapse.org/#protect kern -.1667emelax Synapse:syn1688369/wiki/27311
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TABLE 3
Comparison of different methods using metabric breast cancer (K = 5). G2 represents feature

groups (gene symbol) where all two types of features are selected; G1 represents feature groups
(gene symbol) where only one type of feature is selected. The clustering result is compared with

PAM50 subtype definition in terms of ARI. Survival p-value obtained from the log rank test is given
for the clustering assignment for each method

Method ARI nfeature G1 G2 p-value Time

ISKmeans 0.233 1882 1494 194 8.29 × 10−17 38.4 mins
SparseKmeans 0.22 2004 2004 0 3.04 × 10−13 34.3 mins
iCluster 0.0572 2471 2471 0 0.143 11.8 hours

TCGA example in Section 4.2, IS-Kmeans obtained more G2 features than sparse
K-means and iCluster. The log-rank test of survival difference for the clustering
result defined by IS-Kmeans is more significant than sparse K-means and iClus-
ter. Furthermore, IS-Kmeans has higher ARI compared to sparse K-means and
iCluster, indicating the clustering result of IS-Kmeans is closer to PAM50 defini-
tion than sparse K-means and iCluster. The 5-by-5 confusion table of IS-Kmeans
clustering result and PAM50 subtypes are in the supplementary materials [Huo
and Tseng (2017), Table S4]. In terms of computing time, IS-Kmeans and sparse
K-means are much faster than iCluster.

4.4. Three leukemia transcriptomic datasets using pathway database as prior
knowledge. In the simulations and applications so far (Sections 4.1–4.3), we
have focused on using the cis-regulatory mechanism as grouping information for
integrating multi-level omics data for sample clustering. In this subsection, we
present a different but commonly encountered application of pathway-guided clus-
tering in single transcriptomic study. Specifically, we use pathway information
from databases to provide prior overlapping group information (i.e., a pathway
is a group containing tens to hundreds of genes and two pathways may contain
overlapping genes). A transcriptomic study is used for sample clustering with the
overlapping group information. We apply IS-Kmeans to three leukemia transcrip-
tomic datasets [Verhaak et al. (2009); Balgobind et al. (2010) and Kohlmann et al.
(2008)] separately and using three pathway databases (KEGG, BioCarta and Reac-
tome) independently, generating nine IS-Kmeans clustering results (see Table 4).
The supplementary materials [Huo and Tseng (2017), Table S2] show a summary
description of the three leukemia transcriptomic studies.

We only considered samples from acute myeloid leukemia (AML) with three
fusion gene subtypes: inv(16) (inversions in chromosome 16), t(15;17) (translo-
cations between chromosome 15 and 17), t(8;21) (translocations between chro-
mosomes 8 and 21). These three gene-translocation AML subtypes have been well
studied with different survival, treatment response and prognosis outcomes. Since
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TABLE 4
Comparison of different methods by ARI

Verhaak Kohlmann Balgobind

Method Pathway # features ARI # features ARI # features ARI

IS-Kmeans
Biocarta 1009 0.932 1000 0.948 999 0.792
KEGG 1002 0.901 1013 0.948 990 0.792

Reactome 993 0.932 994 0.948 1008 0.792

iCluster 982 0.733 1233 0.504 1020 0.214
sparse K-means 992 0.932 998 0.948 1014 0.792

the three subtypes are observable under the microscope, we treated these class la-
bels as the underlying truth to evaluate the clustering performance. The expression
data for Verhaak, Balgobind ranged from around [3.169,15.132] while Kohlmann
ranged in [0,1]. All the datasets were downloaded directly from the NCBI GEO
website. Originally, there were 54,613 probe sets in each study. For each study, we
removed genes with any missing value in it. If multiple microarray probes matched
to the same gene symbol, we selected the probe with the largest interquartile range
(IQR) to represent the gene. We ended up with 20,154 unique genes in Verhaak
and 20,155 unique genes in Balgobind and Kohlmann. We further filtered out 30%
low expression genes in each study, which were defined as 30% of genes with the
lowest mean expression. We ended up with 14,108 unique genes in each study.

We obtained the three pathway databases (BioCarta, KEGG and Reactome)
from MSigDB (http://www.broadinstitute.org/gsea/msigdb/collections.jsp#C2) as
the prior group information to guide feature selection in IS-Kmeans. The origi-
nal pathway sizes were 217, 186 and 674 for BioCarta, KEGG and Reactome. We
only kept pathways with size (number of genes inside pathway) greater or equal
to 15 and less or equal to 200 after intersecting with 14,108 unique genes. After
gene size restriction, we ended up with 114, 160 and 428 pathways for BioCarta,
KEGG and Reactome. Note that these pathway groups have large overlaps (i.e.,
many genes appear in multiple pathways).

For each of the three studies, we applied IS-Kmeans (with BioCarta, KEGG and
Reactome as prior group information, respectively), sparse K-means and iCluster.
Note that in this example, IS-Kmeans dealt with single omics dataset with prior
knowledge. For a fair comparison, we tuned the parameters so that the number of
selected features are close to 1000. The result is shown in Table 4. For Verhaak
and Kohlmann, IS-Kmeans and sparse K-means almost recovered the underlying
true clustering labels (ARI = 0.901–0.932), while iCluster had relatively smaller
ARI (ARI = 0.733). We investigated the heatmap of the clustering result of Ver-
haak using iCluster (supplementary materials [Huo and Tseng (2017), Figure S2])
to understand reasons of its worse performance (lower ARI) and found that its

http://www.broadinstitute.org/gsea/msigdb/collections.jsp#C2
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FIG. 3. Pathway enrichment analysis result for Leukemia BioCarta.

solution converged to a stable clustering configuration with clear clustering sep-
aration. Thus, the worse clustering performance in iCluster likely comes from a
local optimum solution. For Balgobind, the clustering results from IS-Kmeans
and sparse K-means had smaller ARI (ARI = 0.792) but iCluster performed even
worse (ARI = 0.214).

To further evaluate functional annotation of the selected intrinsic genes via
each method, we explored pathway enrichment analysis (Figure 3) using BioCarta
database via Fisher exact test. Five methods [iCluster, IS-Kmeans (BioCarta), IS-
Kmeans (KEGG), IS-Kmeans (Reactome), sparse K-means] were compared. The
jittered plot of − log10 p-values is shown in Figure 3. IS-Kmeans (BioCarta) show
the most significant pathways consistently across three studies; this is somewhat
expected since we used the BioCarta pathway as prior knowledge to guide our
feature selection. IS-Kmeans (KEGG) and IS-Kmeans (Reactome) also showed
more significant pathways than sparse K-means and iCluster, indicating incorpo-
rating prior knowledge indeed improved feature selection (in the sense that the
selected feature are more biological meaningful). Note that IS-Kmeans (KEGG)
and IS-Kmeans (Reactome) did not have an overfitting issue since the test pathway
database (BioCarta) was different from the prior knowledge we utilized. Similarly,
the results using KEGG and Reactome as a testing pathway are in supplementary
materials [Huo and Tseng (2017), Figure S3].

5. Conclusion and discussion. Cancer subtype discovery is a critical step for
personalized treatment of the disease. In the era of massive omics datasets and bi-
ological knowledge, how to effectively integrate omics datasets and/or incorporate
existing biological evidence brings new statistical and computational challenges.
In this paper, we proposed an integrative sparse K-means (IS-Kmeans) approach
for this purpose. The existing biological information is incorporated in the model
and the resulting sparse features can be further used to characterize the cancer
subtype properties in clinical application.

Our proposed IS-Kmeans has the following advantages. First, integrative analy-
sis increases clustering accuracy, statistical power and explainable regulatory flow
between different omics types of data. The existing biological information is taken
into account by using the overlapping group lasso. Fully utilizing the inter-omics
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regulatory information and external biological information will increase the accu-
racy and interpretation of the cancer subtype findings. Second, we reformulated
the complex objective function into a simplified form where weighted K-means
and ADMM can be iteratively applied to optimize the convex sub-problems with
closed-form solutions. Due to the nature of classification EM algorithm in K-
means and closed-form iteration updates of ADMM, implementation of the IS-
Kmeans framework is computationally efficient. IS-Kmeans only takes 10–15
minutes for 15,000 omics features and more than 700 subjects on a standard desk-
top with single computing thread while iCluster takes almost 4 hours. Third, the
resulting sparse features from IS-Kmeans have better interpretation than features
selected from iCluster.

IS-Kmeans potentially has the following limitations. The existing biological
information is prone to errors and can be updated frequently. Incorporating false
biological information may dilute information contained in the data and even lead
to biased finding. Therefore, we suggest not to over-weigh the overlapping group
lasso term and choose α = 0.5 to adjust for the balance between information from
existing biological knowledge and information from the omics datasets. The users
can, however, tune this parameter depending on the strength of their prior belief
of the biological knowledge. Another limitation is that IS-Kmeans can only deal
with one cohort with multiple types of omics data. How to effectively combine
multiple cohorts with multi-level omics data will be a future work. R package
“ISKmeans” incorporates C++ for fast computing and it is publicly available on
GitHub https://github.com/Caleb-Huo/IS-Kmeans as well as the authors’ websites.
All the data and code presented in this paper are also available on the authors’
websites.

APPENDIX

A.1. Proof for Theorem 3.1 and Theorem 3.2.

PROOF OF THEOREM 3.1. Given equal separation ability for each feature
R1 = · · · = Rj = · · · = RJ = R and the proposed design of overlapping group
lasso penalty, equation (3.4) becomes

min
C,z

−
J∑

j=1

zjR + γα‖z‖1 + γ (1 − α)
∑

1≤g≤G0

(√ ∑
j∈Jg

1/h(j)

√ ∑
j∈Jg

1/h(j) × z2
j

)

subject to ‖z‖2 ≤ 1, zj ≥ 0,∀j.

First, we can take away the constraint zj ≥ 0, ∀j . It is easy to see that if any
zj < 0, we can always use −zj to replace the solution and the objective function
will decrease. We can write down the Lagrange function of equation (3.4) after

https://github.com/Caleb-Huo/IS-Kmeans
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dropping the constraint zj ≥ 0, ∀j :

L(z, λ) = −
J∑

j=1

zjR + γα‖z‖1

+ γ (1 − α)
∑

1≤g≤G0

(√ ∑
j∈Jg

1/h(j)

√ ∑
j∈Jg

1/h(j) × z2
j

)

+ λ
(‖z‖2

2 − 1
)
.

Partial derivative of the Lagrange is

∂L(z)
∂zj

= −R + γα
∂|zj |
∂zj

+ γ (1 − α)
∑

1≤g≤G0

(√ ∑
j ′∈Jg

1/h
(
j ′)I{j ∈ Jg} × 1/h(j) × zj√∑

j ′∈Jg
1/h(j ′) × z2

j ′

)
+ 2λzj .

It is easy to verify that z1 = z2 = · · · = zJ = 1/
√

J , λ =
√

J (R−γ )
2 will make

∂L(z)
∂zj

= 0, ∀j . Since the object function is a convex function, according to suffi-
ciency of the KKT condition, the proposed penalty design will lead to the solution
of the “unbiased feature selection” principle. �

PROOF OF THEOREM 3.2. For the intrinsic gene set I , we have Rj = R > 0
for j ∈ I . For the nonintrinsic gene set Ī , we have Rj = 0 for j ∈ Ī . Given the
proposed design of overlapping group lasso penalty, equation (3.4) becomes

min
C,z

−
J∑

j=1

zjRI(j ∈ I) + γα‖z‖1

+ γ (1 − α)
∑

1≤g≤G0

(√ ∑
j∈(Jg∩I)

1/h(j)

√ ∑
j∈Jg

1/h(j) × z2
j

)

subject to ‖z‖2 ≤ 1, zj ≥ 0,∀j.

First, we can similarly take away the constraint zj ≥ 0, ∀j . We can write down
the Lagrange function of equation (3.4) after dropping the constraint zj ≥ 0, ∀j :

L(z, λ) = −
J∑

j=1

zjRI(j ∈ I) + γα‖z‖1

+ γ (1 − α)
∑

1≤g≤G0

(√ ∑
j∈(Jg∩I)

1/h(j)

√ ∑
j∈Jg

1/h(j) × z2
j

)

+ λ
(‖z‖2

2 − 1
)
.
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The partial derivative of the Lagrange is

∂L(z)
∂zj

= −RI(j ∈ I) + γα
∂|zj |
∂zj

+ γ (1 − α)
∑

1≤g≤G0

(√ ∑
j ′∈(Jg∩I)

1/h
(
j ′)I{j ∈ Jg} × 1/h(j) × zj√∑

j ′∈Jg
1/h(j ′) × z2

j ′

)

+ 2λzj .

It is easy to verify that if for j ∈ I , zj = 1/
√

J , j ∈ Ī , zj = 0 and λ =
√

J (R−γ )
2

is a zero solution to the partial derivative of the Lagrange function. Note here
we set the sub-gradient ∂|zj |

∂zj
= 0 at zj = 0. Since the object function is a convex

function, according to sufficiency of KKT condition, the proposed penalty design
leads to the “unbiased feature selection” principle. �

A.2. Optimization by KKT condition. There are two optimization prob-
lems:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x+
g = arg min

xg
‖xg‖2 + y�

g xg + ρ

2
‖xg − βg ◦ z‖2

2,

z+ = arg min
z

−∑
zjRj − ∑

1≤g≤G
y�
g (βg ◦ z) + ρ

2

∥∥x+
g − βg ◦ z

∥∥2
2

subject to ‖z‖2 ≤ 1, zj ≥ 0.

It is a convex optimization problem for x+
g with no constraint. The stationarity

condition states that the sub-gradient of the objective function will be 0 at the
optimum solution. Therefore, we have

S
(
x+
g

) + yg + ρ
(
x+
g − βg ◦ z

) = 0,

where S(v) is the sub-gradient of ‖v‖2 and

S(v) ∈
⎧⎨
⎩

v
‖v‖2

if ‖v‖2 ≥ 1,

0 otherwise.

If we define ag = βg ◦ z − yg

ρ
, it can be derived that x+

g = (1 − 1
ρ‖ag‖2

)+ag , where
(·)+ = max(0, ·).

The optimization problem for z+ is a convex optimization problem with two
constraints. We first write down the Lagrange function and convert the constrained
optimization problem into an un-constrained optimization problem:

arg min
z

−∑
j

zjRj − ∑
1≤g≤G

y�
g (βg ◦ z) + ρ

2

∥∥x+
g − βg ◦ z

∥∥2
2

+ u
(‖z‖2 − 1

) − ∑
j

vj zj
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such that u ∈ R, u ≥ 0, vj ∈ R and vj ≥ 0 ∀j . Taking gradient of the La-
grange function with respect to z and use the constraints, we can derive the
solution to this problem. Define bj = ∑

1≤g≤G ρβ2
gj and cj = ∑

1≤g≤G(ρx+
gj +

ygj ) ◦ mgj , where βg = (βg1,βg2, . . . ,βgJ )�, xg = (xg1,xg2, . . . ,xgJ )�, yg =
(yg1,yg2, . . . ,ygJ )�, and mg = (mg1,mg2, . . . ,mgJ )�. The solution is given as

following: we define fj (u) = (
Rj+cj

bj+2u
)+. If

∑
j fj (u)2 < 1, z+

j = fj (0). Other-

wise, z+
j = fj (u) and u is selected s.t. ‖z+‖2 = 1.
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SUPPLEMENTARY MATERIAL

Supplement to “Integrative Sparse K-means with overlapping group lasso
in genomic applications for disease subtype discovery” (DOI: 10.1214/17-
AOAS1033SUPP; .pdf). This supplementary materials contain 3 figures and 6 ta-
bles, regarding results for tuning parameter selection, simulation, leukemia dataset
description, comparison of IS-Kmeans and PAM50 clustering results on TCGA
multi-omics dataset, heatmaps of Verhaak dataset (leukemia), pathway enrichment
analysis result for leukemia using KEGG and Reactome as the testing database.
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