Zhiguang Huo (Caleb)
Monday Nov 13, 2017
Examples: \(\mathbb{E} (x | p^*(x))\) or \(\mathbb{V}\mbox{ar} (x | p^*(x))\)
Problem: We want to estimate \[\mathbb{E}(g (x) | p^*(x)) = \int g(x) p^*(x) dx,\] Given distribution \(p^*(x)\).
Examples: \(\mathbb{E} (x | p^*(x))\) or \(\mathbb{V}\mbox{ar} (x | p^*(x))\)
p <- function(x, a=.4, b=.08){exp(a*(x-a)^2 - b*x^4)}
x <- seq(-4, 4, 0.01)
plot(x,p(x),type="l", main = expression(p(x) == exp (0.4(x-0.4)^{2} - 0.08 * x^{4})))
integrate(f = p, lower = -4, upper = 4)
## 7.852178 with absolute error < 9.1e-06
p <- function(x, a=.4, b=.08){exp(a*(x-a)^2 - b*x^4)}
x2 <- seq(-4, 4, 0.1)
plot(x,p(x),type="n", main = expression(p(x) == exp (0.4(x-0.4)^{2} - 0.08 * x^{4})))
segments(x2,0,x2,p(x2))
(e.g. \(p(x) = \exp [ 0.4(x-0.4)^2 - 0.08x^4 ]\))
p <- function(x, a=.4, b=.08){exp(a*(x-a)^2 - b*x^4)}
x <- seq(-4, 4, 0.01)
qstar <- function(x, C = 30){
C*dnorm(x,sd = 3)
}
plot(x,p(x),type="l", ylim = c(0,5))
curve(qstar,add = T)
text(0, 4.5, expression({q^"*"} (x) == 30* N (x , 0, 3^2) ))
text(1, 2, expression(p(x) == exp (0.4(x-0.4)^{2} - 0.08 * x^{4})))
x0 <- -2.5
segments(x0,0,x0,qstar(x0),col=2)
N <- 10
for(i in 1:N){
set.seed(i)
ay <- runif(1,0,qstar(x0))
acol = ifelse(ay < p(x0),2,4)
points(x0,ay,col=acol,pch=19)
}
Interpretation of the numerator:
## rejection sampling
p <- function(x, a=.4, b=.08){exp(a*(x-a)^2 - b*x^4)}
x <- seq(-4, 4, 0.1)
plot(x,p(x),type="l")
# uniform proposal on [-4,4]:
qstar <- function(x){rep.int(0.125,length(x))}
# we can find M in this case:
C <- round(max(p(x)/qstar(x))) + 1; C
## [1] 25
# number of samples
N <- 1000
# generate proposals and u
x.h <- runif( N, -4, 4 )
u <- runif( N )
acc <- u < p(x.h) / (C * qstar(x.h))
x.acc <- x.h[ acc ]
# how many proposals are accepted
sum( acc ) /N
## [1] 0.326
# calculate some statistics
c(m=mean(x.acc), s=sd(x.acc))
## m s
## -0.7046715 1.3898611
par(mfrow=c(1,2), mar=c(2,2,1,1))
plot(x,p(x),type="l")
barplot(table(round(x.acc,1))/length(x.acc))
Discussion: What does the acceptance rate depend on?
Importance sampling is not a method for generating samples from \(p(x)\) (target 1), it is just a method for estimating the expectation of a function \(g(x)\) (target 2).
\[\hat{\mathbb{E}} (\phi (x) | p^* ) = \frac{\frac{1}{M} \sum_{m=1}^M[\phi (x_m) p(x_m)/q^*(x_m)] }{ \frac{1}{M} \sum_{m=1}^M[p(x_m)/q^*(x_m)]}\]
\(w(x_m) =\frac{p(x_m)}{q^*(x_m)}\)
\[\hat{\mathbb{E}} (\phi (x) | p^* ) = \frac{ \sum_{m=1}^M \phi(x_m) w(x_m)}{ \sum_{m=1}^M w(x_m)} \]
par(mfrow=c(1,2), mar=c(2,2,2,1))
p <- function(x, a=.4, b=.08){exp(a*(x-a)^2 - b*x^4)}
x <- seq(-4, 4, 0.01)
plot(x,p(x),type="l", main = expression(p(x) == exp (0.4(x-0.4)^{2} - 0.08 * x^{4})))
phi <- function(x){ (- 1/3*x^3 + 1/2*x^2 + 12*x - 12) / 30 + 1.3}
x <- seq(-4, 4, 0.01)
plot(x,phi(x),type="l",main= expression(phi(x)))
ep <- function(x) p(x)*phi(x)
truthE <- integrate(f = ep, lower = -4, upper = 4)$value/integrate(f = p, lower = -4, upper = 4)$value
truthE
## [1] 0.6971733
q.r <- rnorm
q.d <- dnorm
par(mfrow=c(1,2))
plot(x,q.d(x),type="l",main='sampler distribution Gaussian')
curve(p, from = -4,to = 4 ,col=2 , main = expression(p(x) == exp (0.4(x-0.4)^{2} - 0.08 * x^{4})))
M <- 1000
x.m <- q.r(M)
ww <- p(x.m) / q.d(x.m)
qq <- ww / sum(ww)
x.g <- phi(x.m)
sum(x.g * qq)
## [1] 0.6956244
M <- 10^seq(1,7,length.out = 30)
result.g <- numeric(length(M))
for(i in 1:length(M)){
aM <- M[i]
x.m <- q.r(aM)
ww <- p(x.m) / q.d(x.m)
qq.g <- ww / sum(ww)
x.g <- phi(x.m)
result.g[i] <- sum(x.g * qq.g)/sum(qq.g)
}
plot(log10(M),result.g,main='importance sampling result Gaussian')
abline(h = truthE, col = 2)
q.r_narrow <- function(x){rnorm(x,0,1/2)}
q.d_narrow <- function(x){dnorm(x,0,1/2)}
par(mfrow=c(1,2))
plot(x,q.d_narrow(x),type="l",main='sampler narrow distribution Gaussian')
curve(p, from = -4,to = 4 ,col=2 , main = expression(p(x) == exp (0.4(x-0.4)^{2} - 0.08 * x^{4})))
M <- 10^seq(1,7,length.out = 30)
result.narrow <- numeric(length(M))
for(i in 1:length(M)){
aM <- M[i]
x.m <- q.r_narrow(aM)
ww <- p(x.m) / q.d_narrow(x.m)
qq.c <- ww / sum(ww)
x.c <- phi(x.m)
result.narrow[i] <- sum(x.c * qq.c)/sum(qq.c)
}
plot(log(M,10),result.narrow)
abline(h = truthE, col = 2)
Remark:
p <- function(x, a=.4, b=.08){exp(a*(x-a)^2 - b*x^4)}
x <- seq(-4, 4, 0.01)
plot(x,p(x),type="l")
qstar <- function(x){rep.int(0.125,length(x))}
N <- 10000
S <- 1000
x.qstar <- runif( N, -4, 4 )
ww <- p(x.qstar) / qstar(x.qstar)
qq <- ww / sum(ww)
x.acc <-sample(x.qstar, size = S, prob=qq, replace=F)
par(mfrow=c(1,2), mar=c(2,2,1,1))
plot(x,p(x),type="l")
barplot(table(round(x.acc,1))/length(x.acc))
\(A(x'|x) = \min \bigg(1, \frac{p(x')}{q(x'|x)}/\frac{p(x)}{q(x|x')} \bigg)\) is a ratio of importance sampling weights.
p <- function(x, a=.4, b=.08){exp(a*(x-a)^2 - b*x^4)}
x <- seq(-4, 4, 0.1)
plot(x,p(x),type="l")
N <- 10000
x.acc5 <- rep.int(NA, N)
u <- runif(N)
acc.count <- 0
std <- 1 ## Spread of proposal distribution
xc <- 0; ## Starting value
for (ii in 1:N){
xp <- rnorm(1, mean=xc, sd=std) ## proposal
alpha <- min(1, (p(xp)/p(xc)) *
(dnorm(xc, mean=xp,sd=std)/dnorm(xp, mean=xc,sd=std)))
x.acc5[ii] <- xc <- ifelse(u[ii] < alpha, xp, xc)
## find number of acccepted proposals:
acc.count <- acc.count + (u[ii] < alpha)
}
## Fraction of accepted *new* proposals
acc.count/N
## [1] 0.7341
par(mfrow=c(1,2), mar=c(2,2,1,1))
plot(x,p(x),type="l")
barplot(table(round(x.acc5,1))/length(x.acc5))
plot(x.acc5,type="l")
Good convergence.
N <- 1000
x.acc5 <- rep.int(NA, N)
u <- runif(N)
acc.count <- 0
std <- 1 ## Spread of proposal distribution
xc <- 8; ## Starting value
for (ii in 1:N){
xp <- rnorm(1, mean=xc, sd=std) ## proposal
alpha <- min(1, (p(xp)/p(xc)) *
(dnorm(xc, mean=xp,sd=std)/dnorm(xp, mean=xc,sd=std)))
x.acc5[ii] <- xc <- ifelse(u[ii] < alpha, xp, xc)
## find number of acccepted proposals:
acc.count <- acc.count + (u[ii] < alpha)
}
## Fraction of accepted *new* proposals
acc.count/N
## [1] 0.732
plot(x.acc5,type="l")
N <- 1000
x.acc5 <- rep.int(NA, N)
u <- runif(N)
acc.count <- 0
std <- 0.1 ## Spread of proposal distribution
xc <- 0; ## Starting value
for (ii in 1:N){
xp <- rnorm(1, mean=xc, sd=std) ## proposal
alpha <- min(1, (p(xp)/p(xc)) *
(dnorm(xc, mean=xp,sd=std)/dnorm(xp, mean=xc,sd=std)))
x.acc5[ii] <- xc <- ifelse(u[ii] < alpha, xp, xc)
## find number of acccepted proposals:
acc.count <- acc.count + (u[ii] < alpha)
}
## Fraction of accepted *new* proposals
acc.count/N
## [1] 0.974
plot(x.acc5,type="l")
\[ \int_{x} p(x)T(x'|x) dx = \int_{x} p(x')T(x|x') dx\] \[ p(x') = \int_{x} p(x)T(x'|x) dx\]
Since p(x) is the true distribution. MH algorithm will eventually converges to the true distribution.
knitr::purl("MC.rmd", output = "MC.R ", documentation = 2)
##
##
## processing file: MC.rmd
##
|
| | 0%
|
|.. | 2%
|
|... | 5%
|
|..... | 7%
|
|...... | 10%
|
|........ | 12%
|
|......... | 14%
|
|........... | 17%
|
|............ | 19%
|
|.............. | 21%
|
|............... | 24%
|
|................. | 26%
|
|................... | 29%
|
|.................... | 31%
|
|...................... | 33%
|
|....................... | 36%
|
|......................... | 38%
|
|.......................... | 40%
|
|............................ | 43%
|
|............................. | 45%
|
|............................... | 48%
|
|................................ | 50%
|
|.................................. | 52%
|
|.................................... | 55%
|
|..................................... | 57%
|
|....................................... | 60%
|
|........................................ | 62%
|
|.......................................... | 64%
|
|........................................... | 67%
|
|............................................. | 69%
|
|.............................................. | 71%
|
|................................................ | 74%
|
|.................................................. | 76%
|
|................................................... | 79%
|
|..................................................... | 81%
|
|...................................................... | 83%
|
|........................................................ | 86%
|
|......................................................... | 88%
|
|........................................................... | 90%
|
|............................................................ | 93%
|
|.............................................................. | 95%
|
|............................................................... | 98%
|
|.................................................................| 100%
## output file: MC.R
## [1] "MC.R "