Zhiguang Huo (Caleb)
Wednesday Nov 29, 2017
Problem setting:
\[f(X|Y=k) = \frac{1}{(2\pi)^{p/2} |\Sigma_k|^{1/2}} \exp ( - \frac{1}{2} (X - \mu_k)^\top \Sigma_k^{-1} (X - \mu_k))\]
library(MASS)
library(ggplot2)
set.seed(32611)
N<-100
d1<-mvrnorm(N, c(1,-1), matrix(c(2, 1, 1, 2), 2, 2))
d2<-mvrnorm(N, c(-1,1), matrix(c(2, 1, 1, 2), 2, 2))
d <- rbind(d1, d2)
label <- c(rep("1", N), rep("2", N))
data_train <- data.frame(label=label, x=d[,1], y=d[,2])
names(data_train)<-c("label", "x", "y")
ggplot(data_train) + aes(x=x,y=y,col=label) + geom_point() + stat_ellipse()
Gaussian density: \[f(X|Y=k) = \frac{1}{(2\pi)^{p/2} |\Sigma_k|^{1/2}} \exp ( - \frac{1}{2} (X - \mu_k)^\top \Sigma_k^{-1} (X - \mu_k))\]
The Bayes rule:
\(\begin{aligned} C_{Bayes}(X) & = \arg \max_k f(Y=k | X) \\ & = \arg \max_k \frac{f(Y=k)f(X|Y=k)}{f(x)} \\ & = \arg \max_k f(Y=k)f(X|Y=k) \\ & = \arg \max_k \log f(Y=k) + \log f(X|Y=k) \\ & = \arg \max_k \log f(Y=k) - \frac{1}{2} \log |\Sigma_k| - \frac{1}{2} (X - \mu_k)^\top \Sigma_k^{-1} (X - \mu_k) \\ & = \arg \min_k - 2 \log f(Y=k) + \log |\Sigma_k| + (X - \mu_k)^\top \Sigma_k^{-1} (X - \mu_k) \end{aligned}\)
The decision boundary for class \(m\) and class \(l\) is: \[f(Y=l|X) = f(Y=m|X)\]
Or equivalently,
\(\begin{aligned} & - 2 \log f(Y=l) + \log |\Sigma_l| + (X - \mu_l)^\top \Sigma_l^{-1} (X - \mu_l) \\ & = - 2 \log f(Y=m) + \log |\Sigma_m| + (X - \mu_m)^\top \Sigma_m^{-1} (X - \mu_m) \end{aligned}\)
Further assume uniform prior \(f(Y=l) = f(Y=m)\), and same covariance structure \(\Sigma_l = \Sigma_m = \Sigma\), the decision hyperlane simplifies as:
\[2 (\mu_l - \mu_m)^\top \Sigma^{-1} X - (\mu_l - \mu_m)^\top \Sigma^{-1} (\mu_l + \mu_m) = 0\]
You can see the decision boundary is linear and passes the center between \(\frac{\mu_l + \mu_m}{2}\).
library(MASS)
alda <- lda(label ~ . ,data=data_train)
avec <- seq(-4,4,0.1)
z <- expand.grid(avec, avec)
z <- data.frame(x=z[,1],y=z[,2])
predict_lda <- predict(alda, z)$class
z_lda <- cbind(region=as.factor(predict_lda), z)
ggplot(z_lda) + aes(x=x,y=y,col=region) + geom_point(alpha = 0.4) + geom_point(data = data_train, aes(x=x,y=y,col=label)) +
labs(title = "LDA boundary")
Further assume diagonal covariance matrix \(\Sigma_l = \Sigma_m = \Sigma = \begin{pmatrix} \sigma_1^2 & \ldots & 0\\ \ldots & \ldots & \ldots\\ 0 & \ldots & \sigma_p^2 \end{pmatrix}\)
Further assume uniform prior \(f(Y=l) = f(Y=m)\), but different covariance structure \(\Sigma_l\), \(\Sigma_m\), the decision hyperlane simplifies as:
\(\begin{aligned} \log |\Sigma_l| + (X - \mu_l)^\top \Sigma_l^{-1} (X - \mu_l) = \log |\Sigma_m| + (X - \mu_m)^\top \Sigma_m^{-1} (X - \mu_m) \end{aligned}\)
You will see the decision boundary is a quadratic function.
library(MASS)
library(ggplot2)
set.seed(32611)
N<-100
d1<-mvrnorm(N, c(0,2), matrix(c(4, 0, 0, 1), 2, 2))
d2<-mvrnorm(N, c(0,-2), matrix(c(1, 0, 0, 4), 2, 2))
d <- rbind(d1, d2)
label <- c(rep("1", N), rep("2", N))
data_train <- data.frame(label=label, x=d[,1], y=d[,2])
names(data_train)<-c("label", "x", "y")
ggplot(data_train) + aes(x=x,y=y,col=label) + geom_point() + stat_ellipse()
library(MASS)
aqda <- qda(label ~ . ,data=data_train)
avec <- seq(-6,6,0.1)
z <- expand.grid(avec, avec)
z <- data.frame(x=z[,1],y=z[,2])
predict_qda <- predict(aqda, z)$class
z_qda <- cbind(region=as.factor(predict_qda), z)
ggplot(z_qda) + aes(x=x,y=y,col=region) + geom_point(alpha = 0.4) + geom_point(data = data_train, aes(x=x,y=y,col=label)) +
labs(title = "QDA boundary")
Further assume diagonal covariance matrix for \(\Sigma_l\) and \(\Sigma_m\) respectively.
library(MASS)
library(ggplot2)
set.seed(32611)
N<-100
d1<-mvrnorm(N, c(3,-3), matrix(c(1, 0, 0, 1), 2, 2))
d2<-mvrnorm(N, c(-3,3), matrix(c(1, 0, 0, 1), 2, 2))
d <- rbind(d1, d2)
label <- c(rep("1", N), rep("-1", N))
data_train <- data.frame(label=label, x=d[,1], y=d[,2])
names(data_train)<-c("label", "x", "y")
p <- ggplot(data_train) + aes(x=x,y=y,col=label) + geom_point()
p + geom_abline(slope=1,intercept=0, col="black") +
geom_abline(slope=0.8,intercept=0.5, col="green") +
geom_abline(slope=1.4,intercept=-0.4, col = "orange")
p +
geom_abline(slope=1,intercept=max(d1[,2] - d1[,1]), col="black", linetype = "dashed") +
geom_abline(slope=1,intercept=min(d2[,2] - d2[,1]), col="black", linetype = "dashed") +
geom_abline(slope=1,intercept=(max(d1[,2] - d1[,1]) + min(d2[,2] - d2[,1]))/2, col="black")
Black line (Separation boundary) with intercept included: \[f(x) = w^\top x\]
red dots \[w^\top x \le -1\]
blue dots \[w^\top x \ge 1\]
Unify red dots and blue dots: \[y w^\top x \ge 1\]
lower dashed line: \[w^\top x- 1 = 0\]
Margin:
\[\frac{w^\top x + 1 - (w^\top x - 1)}{2\|w\|_2} = \frac{2}{2\|w\|_2} = \frac{1}{\|w\|_2}\]
\(\max_{w} \frac{1}{\|w\|_2}\) subject to \(y_i (w^\top x_i ) \ge 1\)
\(\frac{1}{\|w\|_2}\) is not easy to maximize, but \(\|w\|_2^2\) is easy to minimize:
SVM (linear separable case):
\(\min_{w} \frac{1}{2} \|w\|_2^2\) subject to \(y_i (w^\top x_i ) \ge 1\)
\[L(w, \alpha) = \frac{1}{2} \|w\|_2^2 - \sum_i \alpha_i [y_i (w^\top x_i ) - 1]\] By KKT condition, \(\frac{\partial L}{\partial w}\) need to be 0 at the optimun solution.
\[\frac{\partial L}{\partial w_i} = w_i - \alpha_i y_i x_i = 0\] \[w_i = \alpha_i y_i x_i\]
Plugging terms back into Lagrange function \(L\): \[\max_\alpha - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j x_i^\top x_j + \sum_i \alpha_i\] Subject to \(\alpha_i \ge 0\)
p +
geom_abline(slope=1,intercept=max(d1[,2] - d1[,1]), col="black", linetype = "dashed") +
geom_abline(slope=1,intercept=min(d2[,2] - d2[,1]), col="black", linetype = "dashed") +
geom_abline(slope=1,intercept=(max(d1[,2] - d1[,1]) + min(d2[,2] - d2[,1]))/2, col="black")
From KKT condition:
\[\alpha_i [y_i w^\top x_i - 1] = 0\]
library(e1071)
library(ggplot2)
set.seed(32611)
N<-100
d1<-mvrnorm(N, c(3,-3), matrix(c(1, 0, 0, 1), 2, 2))
d2<-mvrnorm(N, c(-3,3), matrix(c(1, 0, 0, 1), 2, 2))
d <- rbind(d1, d2)
label <- c(rep("1", N), rep("-1", N))
data_train <- data.frame(label=label, x=d[,1], y=d[,2])
names(data_train)<-c("label", "x", "y")
asvm <- svm(label ~ . ,data=data_train, kernel = "linear")
avec <- seq(-6,6,0.1)
z <- expand.grid(avec, avec)
z <- data.frame(x=z[,1],y=z[,2])
predict_svm <- predict(asvm, z)
z_svm <- cbind(region=as.factor(predict_svm), z)
ggplot(z_svm) + aes(x=x,y=y,col=region) + geom_point(alpha = 0.4) + geom_point(data = data_train, aes(x=x,y=y,col=label)) +
labs(title = "SVM boundary")
\[w_i = \alpha_i y_i x_i\]
\[\max_\alpha - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j x_i^\top x_j + \sum_i \alpha_i\] Subject to \(\alpha_i \ge 0\)
library(e1071)
library(ggplot2)
N<-100
set.seed(32611)
theta1 <- runif(N,0,2*pi)
r1 <- runif(N,2,3)
theta2 <- runif(N,0,2*pi)
r2 <- runif(N,4,5)
d1 <- cbind(r1 * cos(theta1), r1 * sin(theta1))
d2 <- cbind(r2 * cos(theta2), r2 * sin(theta2))
d <- rbind(d1, d2)
label <- c(rep("1", N), rep("-1", N))
data_train <- data.frame(label=label, x=d[,1], y=d[,2])
names(data_train)<-c("label", "x", "y")
ggplot(data_train, aes(x=x,y=y,col=label))+ geom_point()
asvm <- svm(label ~ . ,data=data_train, kernel = "radial")
avec <- seq(-6,6,0.1)
z <- expand.grid(avec, avec)
z <- data.frame(x=z[,1],y=z[,2])
predict_svm <- predict(asvm, z)
z_svm <- cbind(region=as.factor(predict_svm), z)
ggplot(z_svm) + aes(x=x,y=y,col=region) + geom_point(alpha = 0.4) + geom_point(data = data_train, aes(x=x,y=y,col=label)) +
labs(title = "SVM boundary")
\[\exp(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \ldots\]
library(MASS)
library(ggplot2)
set.seed(32611)
N<-100
d1<-mvrnorm(N, c(2,-2), matrix(c(2, 1, 1, 2), 2, 2))
d2<-mvrnorm(N, c(-2,2), matrix(c(2, 1, 1, 2), 2, 2))
d <- rbind(d1, d2)
label <- c(rep("1", N), rep("-1", N))
data_train <- data.frame(label=label, x=d[,1], y=d[,2])
names(data_train)<-c("label", "x", "y")
p <- ggplot(data_train) + aes(x=x,y=y,col=label) + geom_point()
p + geom_abline(slope=1,intercept=(max(d1[,2] - d1[,1]) + min(d2[,2] - d2[,1]))/2, col="black")
\[\min_{w} \frac{1}{2} \|w\|_2^2 + C\|\zeta\|_2^2\] subject to \(y_i (w^\top x_i ) \ge 1 - \zeta_i\) and \(\zeta_i \ge 0\)
library(e1071)
library(ggplot2)
asvm <- svm(label ~ . ,data=data_train, kernel = "linear")
avec <- seq(-6,6,0.1)
z <- expand.grid(avec, avec)
z <- data.frame(x=z[,1],y=z[,2])
predict_svm <- predict(asvm, z)
z_svm <- cbind(region=as.factor(predict_svm), z)
ggplot(z_svm) + aes(x=x,y=y,col=region) + geom_point(alpha = 0.4) + geom_point(data = data_train, aes(x=x,y=y,col=label)) +
labs(title = "SVM boundary")
Classifier | package | function |
---|---|---|
Logistic regression | stats | glm with parameter family=binomial() |
Linear and quadratic discriminant analysis | MASS | lda, qda |
DLDA and DQDA | sma | stat.diag.da |
KNN classification | class | knn |
CART | rpart | rpart |
Random forest | randomForest | randomForest |
Support Vector machines | e1071 | svm |
knitr::purl("LDAandSVM.rmd", output = "LDAandSVM.R ", documentation = 2)
##
##
## processing file: LDAandSVM.rmd
##
|
| | 0%
|
|.. | 4%
|
|..... | 8%
|
|........ | 12%
|
|.......... | 15%
|
|............ | 19%
|
|............... | 23%
|
|.................. | 27%
|
|.................... | 31%
|
|...................... | 35%
|
|......................... | 38%
|
|............................ | 42%
|
|.............................. | 46%
|
|................................ | 50%
|
|................................... | 54%
|
|...................................... | 58%
|
|........................................ | 62%
|
|.......................................... | 65%
|
|............................................. | 69%
|
|................................................ | 73%
|
|.................................................. | 77%
|
|.................................................... | 81%
|
|....................................................... | 85%
|
|.......................................................... | 88%
|
|............................................................ | 92%
|
|.............................................................. | 96%
|
|.................................................................| 100%
## output file: LDAandSVM.R
## [1] "LDAandSVM.R "