Zhiguang Huo (Caleb)
Wednesday September 27, 2017
a <- 1:10
sample(x = a, size = 2)## [1] 4 2
sample(x = a, size = 2)## [1] 6 9
sample(x = a, size = 2)## [1] 1 4
a <- 1:10
set.seed(32611) ## 32611 can be replaced by any number
sample(x = a, size = 2)## [1] 5 4
set.seed(32611) ## if you keep the same random seed, you will end up with the exact same result
sample(x = a, size = 2)## [1] 5 4
set.seed(32611) ## if you keep the same random seed, you will end up with the exact same result
sample(x = a, size = 2)## [1] 5 4
set.seed(32611)
sample(1:10,2)## [1] 5 4
sample(1:10,2)## [1] 1 5
sample(1:10,2)## [1] 2 1
set.seed(32611)
sample(1:10,2)## [1] 5 4
sample(1:10,2)## [1] 1 5
sample(1:10,2)## [1] 2 1
sample(1:10) ## default is without replacement## [1] 9 4 6 10 2 5 8 3 7 1
sample(1:10, replace = T) ## with replacement## [1] 7 8 6 10 3 4 9 2 10 4
sample(LETTERS[1:10], replace = T) ## with replacement## [1] "A" "B" "C" "B" "H" "F" "H" "H" "E" "E"
For normal distribution:
| Distribution | R command |
|---|---|
| binomial | rbinom |
| Poisson | rpois |
| geometric | rgeom |
| negative binomial | rnbinom |
| uniform | runif |
| exponential | rexp |
| normal | rnorm |
| gamma | rgamma |
| beta | rbeta |
| student t | rt |
| F | rf |
| chi-squared | rchisq |
| Weibull | rweibull |
| log normal | rlnorm |
| Distribution | R command |
|---|---|
| binomial | dbinom |
| Poisson | dpois |
| geometric | dgeom |
| negative binomial | dnbinom |
| uniform | dunif |
| exponential | dexp |
| normal | dnorm |
| gamma | dgamma |
| beta | dbeta |
| student t | dt |
| F | df |
| chi-squared | dchisq |
| Weibull | dweibull |
| log normal | dlnorm |
| Distribution | R command |
|---|---|
| binomial | pbinom |
| Poisson | ppois |
| geometric | pgeom |
| negative binomial | pnbinom |
| uniform | punif |
| exponential | pexp |
| normal | pnorm |
| gamma | pgamma |
| beta | pbeta |
| student t | pt |
| F | pf |
| chi-squared | pchisq |
| Weibull | pweibull |
| log normal | plnorm |
| Distribution | R command |
|---|---|
| binomial | qbinom |
| Poisson | qpois |
| geometric | qgeom |
| negative binomial | qnbinom |
| uniform | qunif |
| exponential | qexp |
| normal | qnorm |
| gamma | qgamma |
| beta | qbeta |
| student t | qt |
| F | qf |
| chi-squared | qchisq |
| Weibull | qweibull |
| log normal | qlnorm |
\[f(x;\mu,\sigma) = \frac{1}{\sqrt{2\pi \sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}\]
aseq <- seq(-4,4,.01)
plot(aseq,dnorm(aseq, 0, 1),type='l', xlab='x', ylab='Density', lwd=2)
lines(aseq,dnorm(aseq, 1, 1),col=2, lwd=2)
lines(aseq,dnorm(aseq,0, 2),col=3, lwd=2)
legend("topleft",c(expression(paste(mu==0, ", " , sigma==1 ,sep=' ')),
expression(paste(mu==1, ", " , sigma==1 ,sep=' ')),
expression(paste(mu==0, ", " , sigma==2 ,sep=' '))),
col=1:3, lty=c(1,1,1), lwd=c(2,2,2), cex=1, bty='n')
mtext(side=3,line=.5,'Normal distributions',cex=1, font=2)aseq <- seq(-4,4,.01)
plot(aseq,dnorm(aseq),type='l', xlab='x', ylab='Density', lwd=2)
lines(aseq,dt(aseq,10),col=2, lwd=2)
lines(aseq,dt(aseq,4),col=3, lwd=2)
lines(aseq,dt(aseq,2),col=4, lwd=2)
legend("topleft",c(expression(normal), expression(paste(df==10,sep=' ')),
expression(paste(df==4,sep=' ')),
expression(paste(df==2,sep=' '))),
col=1:4, lty=c(1,1,1), lwd=c(2,2,2), cex=1, bty='n')
mtext(side=3,line=.5,'t distributions',cex=1, font=2)\[f(k;\lambda) = \frac{\lambda^k e^{-\lambda}}{k!},\] where \(k\) is non negative integer.
aseq <- seq(0,8,1)
par(mfrow=c(2,2))
for(i in 1:4){
counts <- dpois(aseq,i)
names(counts) <- aseq
barplot(counts, xlab='x', ylab='Density', lwd=2, col=i, las = 2, main=bquote(paste(lambda==.(i), sep=' ')), ylim=c(0, 0.4))
}\[f(x;\alpha,\beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha - 1}(1 - x)^{\beta - 1}\]
aseq <- seq(.001,.999,.001)
plot(aseq,dbeta(aseq,.25,.25), type='l', ylim=c(0,6), ylab='Density', xlab='Proportion (p)',lwd=2)
lines(aseq, dbeta(aseq,2,2),lty=2,lwd=2)
lines(aseq, dbeta(aseq,2,5),lty=1,col=2,lwd=2)
lines(aseq, dbeta(aseq,12,2),lty=2,col=2,lwd=2)
lines(aseq, dbeta(aseq,20,.75),lty=1,col='green',lwd=2)
lines(aseq, dbeta(aseq,1,1),lty=2,lwd=2, col=4)
legend(.2,6,c(expression(paste(alpha==.25,', ', beta==.25)), expression(paste(alpha==2,', ',beta==2)), expression(paste(alpha==2,', ', beta==5)), expression(paste(alpha==12,', ',beta==2)), expression(paste(alpha==20,', ',beta==.75)), expression(paste(alpha==1,', ', beta==1))), lty=c(1,2,1,2,1,2), col=c(1,1,2,2,'green',4), cex=1,bty='n',lwd=rep(2,6))
mtext(side=3,line=.5,'Beta distributions',cex=1, font=2)\[f(x;k,\theta) = \frac{1}{\Gamma(k) \theta^k} x^{k-1}e^{-\frac{x}{\theta}}\]
aseq <- seq(0,7,.01)
plot(aseq,dgamma(aseq,1,1),type='l', xlab='x', ylab='Density', lwd=2)
lines(aseq,dgamma(aseq,2,1),col=4, lwd=2)
lines(aseq,dgamma(aseq,4,4),col=2, lwd=2)
legend(3,1,c(expression(paste(alpha==1,', ',beta==1,sep=' ')), expression(paste(alpha==2,', ',beta==1,sep=' ')), expression(paste(alpha==4,', ', beta==4,sep=' '))), col=c(1,4,2), lty=c(1,1,1), lwd=c(2,2,2), cex=1, bty='n')
mtext(side=3,line=.5,'Gamma distributions',cex=1, font=2)A positive random variable \(X\) is log-normally distributed if the logarithm of X is normally distributed, \[\ln(X) \sim N(\mu, \sigma^2)\]
aseq <- seq(0,7,.01)
plot(aseq,dlnorm(aseq,.1,2),type='l', xlab='x', ylab='Density', lwd=2)
lines(aseq,dlnorm(aseq,2,1),col=4, lwd=2)
lines(aseq,dlnorm(aseq,0,1),col=2, lwd=2)
legend(3,1.2,c(expression(paste(mu==0.1,', ',sigma==2,sep=' ')), expression(paste(mu==2,', ',sigma==1,sep=' ')), expression(paste(mu==0,', ',sigma==1,sep=' '))), col=c(1,4,2), lty=c(1,1,1), lwd=c(2,2,2), cex=1,bty='n')
mtext(side=3,line=.5,'Lognormal distributions',cex=1, font=2)set.seed(32608)
z <- rnorm(1000)
hist(z,nclass=50, freq = F)
lines(density(z), col=2, lwd=2)
curve(dnorm, from = -3, to = 4 ,col=4, lwd=2, add = T)
legend("topright", c("empirical", "theoritical"), col=c(2,4), lwd=c(2,2))set.seed(32608)
z <- rnorm(1000)
plot(ecdf(z), ylab="Distribution", main="Empirical distribution",
lwd=2, col="red")
curve(pnorm, from = -3, to = 3, lwd=2, add = T)
legend("topleft", legend=c("Empirical distribution", "Actual distribution"),
lwd=2, col=c("red","black"))The weak law of large number states the sample average converges in probability towards the expected value.
\[\frac{1}{n} \sum_{i=1}^n X_i \rightarrow \mathbb{E}(X)\]
n <- 10^seq(2,8)
set.seed(32608)
## your codepnorm(q = 2, mean = 0, sd = 1, lower.tail = FALSE)## [1] 0.02275013
pnorm(q = 2, mean = 0, sd = 1, lower.tail = FALSE) + pnorm(q = - 2, mean = 0, sd = 1, lower.tail = TRUE)## [1] 0.04550026qnorm(p = 0.975, mean = 0, sd = 1, lower.tail = TRUE) ## [1] 1.959964
\[X \sim N( \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}, \begin{pmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{21} & \sigma_{22} \end{pmatrix} )\]
mu <- c(0,0)
Sigma <- matrix(c(10,3,3,2),2,2)
Sigma## [,1] [,2]
## [1,] 10 3
## [2,] 3 2
var(MASS::mvrnorm(n = 1000, mu, Sigma))## [,1] [,2]
## [1,] 10.144428 2.880464
## [2,] 2.880464 1.859495
mu <- c(0,0)
Sigma1 <- matrix(c(1,0,0,1),2,2)
Sigma2 <- matrix(c(1,0,0,5),2,2)
Sigma3 <- matrix(c(5,0,0,1),2,2)
Sigma4 <- matrix(c(1,0.8,0.8,1),2,2)
Sigma5 <- matrix(c(1,1,1,1),2,2)
Sigma6 <- matrix(c(1,-0.8,-0.8,1),2,2)
arange <- c(-6,6)
par(mfrow=c(2,3))
plot(MASS::mvrnorm(n = 1000, mu, Sigma1), xlim=arange, ylim=arange)
plot(MASS::mvrnorm(n = 1000, mu, Sigma2), xlim=arange, ylim=arange)
plot(MASS::mvrnorm(n = 1000, mu, Sigma3), xlim=arange, ylim=arange)
plot(MASS::mvrnorm(n = 1000, mu, Sigma4), xlim=arange, ylim=arange)
plot(MASS::mvrnorm(n = 1000, mu, Sigma5), xlim=arange, ylim=arange)
plot(MASS::mvrnorm(n = 1000, mu, Sigma6), xlim=arange, ylim=arange)library(truncdist)## Loading required package: stats4
## Loading required package: evd
# dtrunc
# rtrunc
# ptrunc
# qtruncx <- rtrunc( 1000, spec="norm", a=1, b=Inf )
hist(x, nclass = 50)truncf <- function(x) dtrunc(x, spec="norm", a=1, b=Inf )
curve(truncf, from = -6, to = 6)dtrunc(0.5, spec="norm", a=-2, b=Inf )## [1] 0.3602613
dtrunc(0.5, spec="beta", shape1=2, shape2 = 2, a=0.3, b=Inf )## [1] 1.913265
dtrunc(0.5, spec="gamma", shape=2, rate = 2, a=0.3, b=Inf )## [1] 0.8379001
\[F_Z(x) = P(F_X(X) \le x) = P(X \le F_X^{-1}(x)) = F_X(F_X^{-1}(x)) = x\] - If \(U\) is a uniform random variable who takes values in \([0, 1]\), \[F_U(x) = \int_R f_U(u) du = \int_0^x du = x\]
Thus \(Z \sim UNIF(0, 1)\)
set.seed(32611)
n <- 10000
x1 <- rbeta(n, 3, 1)
x2_0 <- runif(n)
x2 <- x2_0^{1/3}
par(mfrow=c(1,2))
hist(x1, nclass=50)
hist(x2, nclass=50)Simulate 100 samples with group label A from \[X \sim N( \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 & -0.8 \\ -0.8 & 1 \end{pmatrix} )\]
Simulate 100 samples with group label B from \[X \sim N( \begin{pmatrix} 3 \\ 3 \end{pmatrix}, \begin{pmatrix} 1 & 0.8 \\ 0.8 & 1 \end{pmatrix} )\]
apply hclust() to the data (dimension \(200 \times 2\)), visualize the hierarchical tree structure.
knitr::purl("rvb.Rmd", output = "rvb.R ", documentation = 2)##
##
## processing file: rvb.Rmd
##
|
| | 0%
|
|. | 2%
|
|.. | 4%
|
|.... | 6%
|
|..... | 8%
|
|...... | 10%
|
|........ | 12%
|
|......... | 13%
|
|.......... | 15%
|
|........... | 17%
|
|............ | 19%
|
|.............. | 21%
|
|............... | 23%
|
|................ | 25%
|
|.................. | 27%
|
|................... | 29%
|
|.................... | 31%
|
|..................... | 33%
|
|...................... | 35%
|
|........................ | 37%
|
|......................... | 38%
|
|.......................... | 40%
|
|............................ | 42%
|
|............................. | 44%
|
|.............................. | 46%
|
|............................... | 48%
|
|................................ | 50%
|
|.................................. | 52%
|
|................................... | 54%
|
|.................................... | 56%
|
|...................................... | 58%
|
|....................................... | 60%
|
|........................................ | 62%
|
|......................................... | 63%
|
|.......................................... | 65%
|
|............................................ | 67%
|
|............................................. | 69%
|
|.............................................. | 71%
|
|................................................ | 73%
|
|................................................. | 75%
|
|.................................................. | 77%
|
|................................................... | 79%
|
|.................................................... | 81%
|
|...................................................... | 83%
|
|....................................................... | 85%
|
|........................................................ | 87%
|
|.......................................................... | 88%
|
|........................................................... | 90%
|
|............................................................ | 92%
|
|............................................................. | 94%
|
|.............................................................. | 96%
|
|................................................................ | 98%
|
|.................................................................| 100%
## output file: rvb.R
## [1] "rvb.R "