Zhiguang Huo (Caleb)
Wednesday Oct 02, 2019
by default, we write a vector as a column \[ \textbf{x}= \begin{pmatrix} x_1 \\ x_2 \\ \ldots \\ x_p \end{pmatrix} \]
or we can write as the transpose of a row vector
\[ \textbf{x} = (x_1, x_2, \ldots, x_p)^\top \]
\[ \textbf{X}= \begin{pmatrix} x_{11} & x_{12} & \ldots & x_{1p} \\ x_{21} & x_{22} & \ldots & x_{2p} \\ \ldots \\ x_{n1} & x_{n2} & \ldots & x_{np} \end{pmatrix} \]
\[ \textbf{a}^\top \textbf{b} = \textbf{b}^\top \textbf{a} = a_1b_1 + a_2b_2 + \ldots + a_p b_p = \sum_{i=1}^p a_ib_i \]
\[ \textbf{a}^\top\textbf{X} = \textbf{a}^\top (\textbf{X}_1, \textbf{X}_2, \ldots, \textbf{X}_p) = (\textbf{a}^\top \textbf{X}_1, \textbf{a}^\top\textbf{X}_2, \ldots, \textbf{a}^\top\textbf{X}_p) \in \mathbb{R}^{1 \times p} \]
matrix \(\textbf{X} \in \mathbb{R}^{n \times p}\): \[\textbf{X}= \begin{pmatrix} x_{11} & x_{12} & \ldots & x_{1p} \\ x_{21} & x_{22} & \ldots & x_{2p} \\ \ldots \\ x_{n1} & x_{n2} & \ldots & x_{np} \end{pmatrix} \]
matrix \(\textbf{Y} \in \mathbb{R}^{p \times m}\): \[\textbf{Y}= \begin{pmatrix} y_{11} & y_{12} & \ldots & y_{1m} \\ y_{21} & y_{22} & \ldots & y_{2m} \\ \ldots \\ y_{p1} & y_{p2} & \ldots & y_{pm} \end{pmatrix} \]
matrix \(\textbf{X} \textbf{Y} \in \mathbb{R}^{n \times m}\):
\[\textbf{X} \textbf{Y} = \begin{pmatrix} \sum_{i=1}^p x_{1i}y_{i1} & \sum_{i=1}^p x_{1i}y_{i2} & \ldots & \sum_{i=1}^p x_{1i}y_{im} \\ \sum_{i=1}^p x_{2i}y_{i1} & \sum_{i=1}^p x_{2i}y_{i2} & \ldots & \sum_{i=1}^p x_{2i}y_{im} \\ \ldots \\ \sum_{i=1}^p x_{ni}y_{i1} & \sum_{i=1}^p x_{ni}y_{i2} & \ldots & \sum_{i=1}^p x_{ni}y_{im} \end{pmatrix} \]
\[\textbf{X}= \begin{pmatrix} \textbf{x}_{1}^\top\\ \ldots \\ \textbf{x}_{n}^\top \end{pmatrix} \]
\[\textbf{Y}= (\textbf{y}_{1}, \ldots, \textbf{y}_{m}) \]
\[\textbf{X} \textbf{Y} = \begin{pmatrix} \textbf{x}_{1}^\top \textbf{y}_{1} & \textbf{x}_{1}^\top \textbf{y}_{2} & \ldots & \textbf{x}_{1}^\top \textbf{y}_{m} \\ \textbf{x}_{2}^\top \textbf{y}_{1} & \textbf{x}_{2}^\top \textbf{y}_{2} & \ldots & \textbf{x}_{2}^\top \textbf{y}_{m} \\ \ldots \\ \textbf{x}_{n}^\top \textbf{y}_{1} & \textbf{x}_{n}^\top \textbf{y}_{2} & \ldots & \textbf{x}_{n}^\top \textbf{y}_{m} \\ \end{pmatrix} \]
\[\textbf{Y}^{-1} \textbf{Y} = I\] \[\textbf{Y} \textbf{Y}^{-1} = I\]
\[\textbf{Y}^{-1} = \frac{I}{\textbf{Y}}\]
mdat <- matrix(c(1,2,3, 11,12,13), nrow = 2, ncol = 3, byrow = FALSE,
               dimnames = list(c("row1", "row2"),
                               c("C.1", "C.2", "C.3")))
mdat##      C.1 C.2 C.3
## row1   1   3  12
## row2   2  11  13mdat <- c(1,2,3, 11,12,13)
dim(mdat) <- c(2,3)
rownames(mdat) <- c("row1", "row2")
colnames(mdat) <- c("C.1", "C.2", "C.3")
mdat##      C.1 C.2 C.3
## row1   1   3  12
## row2   2  11  13## [1] 2 3## [1] 2 4## [1] 3 3## [1] 1## C.1 C.2 
##   1   3## C.1 C.2 C.3 
##   1   3  12## C.2 C.3 
##   3  12##      C.1 C.2 C.3
## row1   1   3  12
## row2   2  11  13## [[1]]
## [1] "row1" "row2"
## 
## [[2]]
## [1] "C.1" "C.2" "C.3"## [1] "row1" "row2"## [1] "C.1" "C.2" "C.3"## [1] 1## C.2 C.3 
##  11  13## C.1 C.3 
##   1  12##      [,1] [,2] [,3]
## [1,]    1    3    5
## [2,]    2    4    6##      [,1] [,2]
## [1,]    1    2
## [2,]    3    4
## [3,]    5    6##      C.1 C.2 C.3
## row1   3   9  36
## row2   6  33  39##      C.1 C.2 C.3
## row1   1   3  12
## row2   4  22  26##      C.1 C.2 C.3
## row1   1   9  60
## row2   4  44  78##      C.1 C.2 C.3
## row1   4   6  15
## row2   5  14  16##      C.1 C.2 C.3
## row1   0   2  11
## row2   0   9  11##      C.1 C.2 C.3
## row1   2   6  17
## row2   4  15  19##      [,1] [,2] [,3]
## [1,]    1    3    5
## [2,]    2    4    6##      [,1] [,2]
## [1,]    1    4
## [2,]    2    5
## [3,]    3    6##      [,1] [,2]
## [1,]   22   49
## [2,]   28   64##      [,1] [,2] [,3]
## [1,]    9   19   29
## [2,]   12   26   40
## [3,]   15   33   51##      [,1]
## [1,]    1
## [2,]    2##      [,1]
## [1,]    2
## [2,]    2##      [,1]
## [1,]    6##      [,1] [,2]
## [1,]    2    2
## [2,]    4    4##      [,1]
## [1,]    5##      [,1] [,2]
## [1,]    1    2
## [2,]    2    4##      [,1] [,2] [,3]
## [1,]    1    4    7
## [2,]    2    5    8
## [3,]    3    6    9## [1] 1 5 9##      [,1] [,2] [,3]
## [1,]    1    0    0
## [2,]    0    4    0
## [3,]    0    0    7##      [,1] [,2] [,3]
## [1,]    1    0    0
## [2,]    0    1    0
## [3,]    0    0    1##      [,1] [,2] [,3]
## [1,]  1.0 -0.5  0.5
## [2,] -4.0  2.5 -3.0
## [3,]  2.5 -1.5  2.0##      [,1] [,2] [,3]
## [1,]    1    0    0
## [2,]    0    1    0
## [3,]    0    0    1##      [,1] [,2] [,3]
## [1,]    1    0    0
## [2,]    0    1    0
## [3,]    0    0    1##             [,1]       [,2]       [,3]
## [1,]  0.07699352  0.3381365 -1.9363229
## [2,] -0.56610906 -0.3786229 -0.5720703
## [3,]  0.80627284  0.7446219  0.7198154## [1] 0.5756702 0.8367205 0.2964995## [1] -7.2976775  7.5871849  0.7374597##           [,1]
## [1,] 0.5756702
## [2,] 0.8367205
## [3,] 0.2964995##            [,1]      [,2]       [,3]
## [1,]  0.7013869 -7.703428 -4.2355174
## [2,] -0.2457031  7.389853  5.2121071
## [3,] -0.5314604  0.984167  0.7417649##             [,1]       [,2]
## [1,]  0.07699352  0.3381365
## [2,] -0.56610906 -0.3786229
## [3,]  0.80627284  0.7446219##           [,1]      [,2]      [,3]
## [1,] -2.572491 -1.640808 0.3338684
## [2,]  3.079399  1.232375 0.5712269##             [,1]       [,2]
## [1,]  0.07699352  0.3381365
## [2,] -0.56610906 -0.3786229
## [3,]  0.80627284  0.7446219reference: https://en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix
A (non-zero) vector \(v \in \mathbb{R}^N\) is an eigenvector of a square matrix \(A\in \mathbb{R}^{N\times N}\) if it satisfies the linear equation \[Av = \lambda v\] where \(\lambda \in \mathbb{R}\) is the eigenvalue corresponding to \(v\). Since if \(v\) is eigenvector, \(bv\) (\(b\in \mathbb{R}\)) is also eigenvector, we restrict \(\|v\|_2 = 1\)
## eigen() decomposition
## $values
## [1] 5.732051 2.267949 1.000000
## 
## $vectors
##            [,1]       [,2]       [,3]
## [1,] -0.4597008  0.8880738  0.0000000
## [2,] -0.6279630 -0.3250576 -0.7071068
## [3,] -0.6279630 -0.3250576  0.7071068##               [,1]          [,2]          [,3]
## [1,]  1.000000e+00 -5.551115e-17  0.000000e+00
## [2,] -5.551115e-17  1.000000e+00 -2.220446e-16
## [3,]  0.000000e+00 -2.220446e-16  1.000000e+00##      [,1] [,2] [,3]
## [1,]    3    1    1
## [2,]    1    3    2
## [3,]    1    2    3##      [,1] [,2] [,3]
## [1,]    1    3    5
## [2,]    2    4    6## $d
## [1] 9.5255181 0.5143006
## 
## $u
##            [,1]       [,2]
## [1,] -0.6196295 -0.7848945
## [2,] -0.7848945  0.6196295
## 
## $v
##            [,1]       [,2]
## [1,] -0.2298477  0.8834610
## [2,] -0.5247448  0.2407825
## [3,] -0.8196419 -0.4018960##      [,1] [,2] [,3]
## [1,]    1    3    5
## [2,]    2    4    6##              [,1]         [,2]
## [1,] 1.000000e+00 2.220446e-16
## [2,] 2.220446e-16 1.000000e+00##              [,1]         [,2]
## [1,] 1.000000e+00 1.110223e-16
## [2,] 1.110223e-16 1.000000e+00## [1] 8## [1] 14## [1] 3