Zhiguang Huo (Caleb)
Wednesday November 18, 2020
Purpose: predict whether a student will play cricket in his/her leisure time, based on his/her three variables.
Questions:
Terminology:
Goodness of split (GOS) criteria - impurity
Details: - Selects the split and cutoff which result in most pure subset of nodes. - explores to split all available nodes. - explores to split all possible cutoffs for each node.
Assume:
\[M_{Gini}(t) = 1 - P(Y = 0 | X \in t)^2 - P(Y = 1 | X \in t)^2\]
Given an impurity function \(M(t)\), the GOS criterion is to find the split \(t_L\) and \(t_R\) of note \(t\) such that the impurity measure is maximally decreased:
\[\arg \max_{t_R, t_L} M(t) - [P(X\in t_L|X\in t) M(t_L) + P(X\in t_R|X\in t) M(t_R)]\]
If split on Gender: \[M_{Gini}(R) - \frac{10}{30}M_{Gini}(G:F) - \frac{20}{30}M_{Gini}(G:M) = 0.5 - 10/30\times 0.32 - 20/30\times 0.455 = 0.09 \]
If split on Class: \[M_{Gini}(R) - \frac{14}{30}M_{Gini}(C:4) - \frac{16}{30}M_{Gini}(C:5) = 0.5 - 14/30\times 0.4902 - 16/30\times 0.4928 = 0.008 \]
If split on Height:5.5 \[M_{Gini}(R) - \frac{12}{30}M_{Gini}(H:5.5-) - \frac{18}{30}M_{Gini}(H:5.5+) = 0.5 - 12/30*0.4872 - 18/30*0.4928 = 0.00944 \]
Therefore, we will split based on Gender (maximized decrease).
Assume:
\[M_{entropy}(t) = - P(Y = 0 | X \in t)\log P(Y = 0 | X \in t) - P(Y = 1 | X \in t)\log P(Y = 1 | X \in t)\]
Given an impurity function \(M(t)\), the GOS criterion is to find the split \(t_L\) and \(t_R\) of note \(t\) such that the impurity measure is maximally decreased:
\[\arg \max_{t_R, t_L} M(t) - [P(X\in t_L|X\in t) M(t_L) + P(X\in t_R|X\in t) M(t_R)]\]
If split on Gender: \[M_{entropy}(R) - \frac{10}{30}M_{entropy}(G:F) - \frac{20}{30}M_{entropy}(G:M) = 0.6931472 - 10/30\times 0.5004024 - 20/30\times 0.6474466 = 0.09471533 \]
If split on Class: \[M_{entropy}(R) - \frac{14}{30}M_{entropy}(C:4) - \frac{16}{30}M_{entropy}(C:5) = 0.6931472 - 14/30\times 0.6833149 - 16/30\times 0.6859298 = 0.008437687 \]
If split on Height:5.5 \[M_{entropy}(R) - \frac{12}{30}M_{entropy}(H:5.5-) - \frac{18}{30}M_{entropy}(H:5.5+) = 0.6931472 - 12/30 \times 0.680292 - 18/30\times 0.6859298 = 0.00947252 \]
Therefore, we will split based on Gender (maximized decrease).
Complexity for each split:
How to make a prediction:
\[\hat{p}_{mk} = \frac{1}{N_m} \sum_{x_i \in t_m} \mathbb{I}(y_i = k)\]
E.g. if a new subject (G:Male, Class:X, H:5.8ft) falls into a terminal node, we just do a majority vote.
## lcavol lweight age lbph svi lcp gleason pgg45 lpsa
## 1 -0.5798185 2.769459 50 -1.386294 0 -1.386294 6 0 -0.4307829
## 2 -0.9942523 3.319626 58 -1.386294 0 -1.386294 6 0 -0.1625189
## 3 -0.5108256 2.691243 74 -1.386294 0 -1.386294 7 20 -0.1625189
## 4 -1.2039728 3.282789 58 -1.386294 0 -1.386294 6 0 -0.1625189
## 5 0.7514161 3.432373 62 -1.386294 0 -1.386294 6 0 0.3715636
## 6 -1.0498221 3.228826 50 -1.386294 0 -1.386294 6 0 0.7654678
## train
## 1 TRUE
## 2 TRUE
## 3 TRUE
## 4 TRUE
## 5 TRUE
## 6 TRUE
For supervised machine learning, usually we split the data into the training set and the testing set.
prostate_train <- subset(prostate, subset = train==TRUE)
prostate_test <- subset(prostate, subset = train==FALSE)
afit <- rpart(as.factor(svi) ~ . - train, data = prostate_train) ## svi as binary outcome
#afit <- rpart(svi ~ . - train, data = prostate_train) ## svi as continuous outcome
afit
## n= 67
##
## node), split, n, loss, yval, (yprob)
## * denotes terminal node
##
## 1) root 67 15 0 (0.77611940 0.22388060)
## 2) lcavol< 2.523279 52 3 0 (0.94230769 0.05769231) *
## 3) lcavol>=2.523279 15 3 1 (0.20000000 0.80000000) *
## 0 1
## 7 0.9423077 0.05769231
## 9 0.9423077 0.05769231
## 10 0.9423077 0.05769231
## 15 0.9423077 0.05769231
## 22 0.9423077 0.05769231
## 25 0.9423077 0.05769231
## trueLabel
## predictLabel 0 1
## FALSE 21 4
## TRUE 3 2
## [1] 0.7666667
The cost-complexity of \(T\) is \[C_\alpha (T) = \hat{R}(T) + \alpha |T|,\] where
Another way is to set \(\alpha = \frac{R(T_i) - R(T_{i-1})}{|T_{i-1}| - |T_{i}|}\)
## [1] 891 12
## PassengerId Survived Pclass
## 1 1 0 3
## 2 2 1 1
## 3 3 1 3
## 4 4 1 1
## 5 5 0 3
## 6 6 0 3
## Name Sex Age SibSp Parch
## 1 Braund, Mr. Owen Harris male 22 1 0
## 2 Cumings, Mrs. John Bradley (Florence Briggs Thayer) female 38 1 0
## 3 Heikkinen, Miss. Laina female 26 0 0
## 4 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35 1 0
## 5 Allen, Mr. William Henry male 35 0 0
## 6 Moran, Mr. James male NA 0 0
## Ticket Fare Cabin Embarked
## 1 A/5 21171 7.2500 S
## 2 PC 17599 71.2833 C85 C
## 3 STON/O2. 3101282 7.9250 S
## 4 113803 53.1000 C123 S
## 5 373450 8.0500 S
## 6 330877 8.4583 Q
Assume number of cases in the training set is N, and number of features is M.
## randomForest 4.6-14
## Type rfNews() to see new features/changes/bug fixes.
prostate_train <- subset(prostate, subset = train==TRUE)
prostate_test <- subset(prostate, subset = train==FALSE)
rffit <- randomForest(as.factor(svi) ~ . - train, data = prostate_train)
rffit
##
## Call:
## randomForest(formula = as.factor(svi) ~ . - train, data = prostate_train)
## Type of random forest: classification
## Number of trees: 500
## No. of variables tried at each split: 2
##
## OOB estimate of error rate: 13.43%
## Confusion matrix:
## 0 1 class.error
## 0 49 3 0.05769231
## 1 6 9 0.40000000
pred_rf <- predict(rffit, prostate_test)
ctable <- table(pred_rf, trueLabel = prostate_test$svi)
ctable
## trueLabel
## pred_rf 0 1
## 0 22 4
## 1 2 2
## [1] 0.8
##
## Attaching package: 'ggplot2'
## The following object is masked from 'package:randomForest':
##
## margin
Apply random forest on Titanic dataset to predict survival.