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What is Mendelian randomization (MR)

I Use inherited genetic variants to infer causal relationship of an
exposure and an outcome.
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Motivating example

I Goal: investigate the effect of alcohol consumption on blood
pressure.

I Observational studies have shown higher alcohol consumption
was associated with higher blood pressure (Marmot et al.,
1994; Fuchs et al., 2001).

I This association could not imply causal effect because of
confounders.

I Smoking increases alcohol assumption.
I Smoking increases blood pressure.
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Motivation

I Observational study is very popular in biomedical studies.

I The association from observational study does not imply
causality, because of confounding variables.

I For known confounders, we can adjust them as covariates.
I For unknown confounders:

I Randomized clinical trials (RCT)
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Randomized clinical trials (RCT)

I RCT will lead to causal relationships between alcohol
consumption and blood pressure.

I Drawbacks:
I Time consuming
I Loss of follow-up participants
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Idea of Mendelian randomization

I Alcohol is initially metabolised to acetaldehyde, which can be
further eliminated (Davies et al., 2018).

I The major enzyme for this elimination is alcohol
dehydrogenase 2 (ALDH2).

I A variant in the ALDH2 gene (Chen et al., 2008) (rs671,
reference allele G)

I Alternative allele A was found in east Asian population
I Causes a facial flush response and slows the metabolism of

acetaldehyde

I In a study of 4,057 participants (Takagi et al., 2001)
I Those with two copies of A drank an average of 1.1 g of

alcohol.
I Those with no copies of A allele drank 23.7 g.
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Ideas behind MR

I The genetic variants are inherited from parents
I This genetic variant is not affected by confounding variables

(smoking)
I This genetic variant is not affected by blood pressure level.

I The genetic variant can define groups of different level of
alcohol consumption

I If allele A non-carriers drank heavy, and had higher blood
pressure

I If allele A carriers drank light, and had lower blood pressure
I Genetic variants can be thought of random allocation

I Then we can conclude the effect of alcohol consumption on
blood pressure is causal.

I The relationship is not likely to be confounded.
I It is not likely that blood pressure causes alcohol consumption

(reverse caution)

8 / 34



Conceptual analogy between MR and randomized clinical
trials (RCT)
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Mendelian randomization (MR)

I Idea: If we cannot randomize the exposure, we can find a
randomized instrumental variable to disentangle.

I Genetic variants are also referred as instrumental variables

I The original idea was first proposed as economy field, which
also called instrument variable (IV) regression.

Goals of MR studies:

1. Test the existence of the causal relationship between the
exposure variable and the outcome variable.

2. Estimate the magnitude of the causal effect of the exposure
variable on the outcome variable.
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Notations

I G: genetic variant

I Y: outcome variable

I X: exposure variable

I U: unknown confounders
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Three core assumptions for hypothesis testing

G: genetic variant; Y: outcome variable; X: exposure variable; U:
unknown confounders

1. Independence between G and U

G ⊥ U

2. Established association between G and X

P(X |G ) 6= P(X )

3. No alternative pathway from G to Y , (exclusion restriction)

G ⊥ Y |X ,U

I Theorem: testing G − Y association is equivalent to testing
causal relationship Y − X .
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Testing causal relationship (Didelez et al., 2010)

P(Y ,G ) =

∫
U

∫
X
P(Y ,X ,U,G )

=

∫
U

∫
X
P(Y |X ,U)P(X |G ,U)P(U)P(G )

= P(G )

∫
U
P(U)

∫
X
P(Y |X ,U)P(X |G ,U)

If Y ⊥ X |U, i.e., P(Y |X ,U) = P(Y |U),

P(Y ,G ) = P(G )

∫
U
P(U)P(Y |U)

∫
X
P(X |G ,U)

= P(G )P(Y )

I Therefore, Y ⊥ X |U → Y ⊥ G
I Under the pre-mentioned assumptions, we only need to test

whether Y and G are independent, in order to establish causal
relationship between X and Y
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Estimating causal effect in linear models

I Two more assumptions for linear regression:
I The effect of X on Y is linear.
I No interaction between X and U.

I Suppose data generating models are

X = α0 + α1G + α2U + ε1

Y = β0 + β1X + β2U + ε2

I We can obtain the following relationship

E(X |G ) = α0 + α1G

E(Y |G ) = θ0 + θ1G
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IV estimators are essentially ratio estimators

I Since

θ1 = E[Y |G = g + 1]− E[Y |G = g ]

= β1(E[X |g + 1]− E[X |g ]) + β2(E[U|g + 1]− E[U|g ])

= β1α1

I Therefore, β1 = θ1/α1

I When X ∈ R, G ∈ R (one exposure variable and one
instrument variable), the IV estimator can be written as the
ratio of two OLS estimator

β̂IV =
θ̂1
α̂1

I The se of β̂IV can be determined by delta method (Wald,
1940).
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Instrumental Variable estimation in linear models
I Suppose G ∈ Rn×l and X ∈ Rn×p have same dimension (i.e.,

p = l , both may contain intercept), and confounder U is
absorbed in the error ε

Y = Xβ + ε

I The usual OLS does not give unbiased estimation for
unconfounded effect, because X and ε are correlated.

X>Y = X>Xβ + X>ε
I If the instrument G is independent of error ε

G>Y = G>Xβ + G>ε

β̂IV = (G>X )−1G>Y
√
n(β̂IV − β) ∼ N(0, σ2Q−1GXQGGQ

−1
XG ),

where QGX = lim
n→∞

G>X
n , QGG = lim

n→∞
G>G
n
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Connection with the ratio estimator

Suppose X = (1,X ) ∈ Rn×2, G = (1, g) ∈ Rn×2

β̂IV = (β̂0, β̂IV )>

= (G>X )−1G>Y

= (G>X )−1(G>G )(G>G )−1G>Y

= {(G>G )−1(G>X )}−1{(G>G )−1G>Y }

It can be verified that

β̂IV =
θ̂1
α̂1
,

where θ1 is the slope of regressing Y on g , α1 is the slope of
regressing X on g .
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Generalized methods of moment
What if G ∈ Rn×I has more dimension than X ∈ Rn×p (i.e.,
I > p), more equations than the number of parameters.

gn(β) =
1

n
G>(Y − Xβ)

I If I = p, we could obtain an estimate of β by setting
gn(β) = 0

I More generally, for some positive matrix W ∈ RI×I , let

Jn(β) = ngn(β)>W ngn(β)

I The goal is to set Jn(β) close to zero.

βGMM = arg min Jn(β)

= {(X>G )W n(G>X )}−1(X>G )W n(G>Y )

I The scale of W n does not change βGMM
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Optimal W n

I It can be proved that when W n = ( 1nG
>G σ̂2)−1, βGMM is

optimal.

I

βGMM = {(X>G )(G>G )>(G>X )}−1(X>G )(G>G )>(G>Y )

I The asymptotic distribution

√
n(β̂GMM − β) ∼ N(0, σ2Q−1GXQGGQ

−1
XG ),

I In the economics literature, this is also referred as two-stage
least squares (2SLS) estimator, or instrumental variable
estimator (IV)

βIV = {(X>G )(G>G )>(G>X )}−1(X>G )(G>G )>(G>Y )
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Two-stage least squares (2SLS) estimator

I 2SLS estimator

βIV = {(X>G )(G>G )>(G>X )}−1(X>G )(G>G )>(G>Y )

√
n(β̂IV − β) ∼ N(0, σ2Q−1GXQGGQ

−1
XG ),

I computationally simple and stable

1. Compute X̂ (i.e., regress X on G , obtain fitted value)

X̂ = G (G>G )−1GX

2. Then regress Y on X̂

βIV = (X̂
>
X̂ )−1X̂

>
Y

= {(X>G )(G>G )>(G>X )}−1(X>G )(G>G )>(G>Y )
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Intuition behind 2SLS

I Use instrumental variables (genetic variants) to exact the
variation of the exposure variable (X) that is independent of
confounding variables

X̂ = G (G>G )−1GX

I Use this part of variation to estimate the causal effect.

βIV = (X̂
>
X̂ )−1X̂

>
Y
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Caution about assumptions
1. Independence between G and U, (usually untestable)

I This is the assumption that introduce the “randomization”
2. Known association between G and X (testable)

I Weak genetic instrument can lead to poor estimation of causal
effect

I Intuition: large variability in α̂1 will lead to large variability in
β̂IV .

β̂IV =
θ̂1
α̂1
,

3. No other pathway from G to Y other than through X
(exclusion restriction)

I Pleiotropy
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Relaxed assumptions: adjust for known confounders
Suppose there is a set of known confounders W (population
stratification, demographic/behavioral/socio-economical factor),
denote U to be unknown confounders

1. G ⊥ U|W
2. G correlates with X |W
3. G ⊥ Y |X ,U,W

I Testing Y ⊥ X |W ,U is equivalent to testing Y ⊥ G |W .
I In linear models, β1 = θ1/α1 still holds

E(Y |X ,W ,U) = β0 + β1X + β2W + β3U

E(X |G ,W ) = α0 + α1G + α2W

E(Y |G ,W ) = θ0 + θ1G + θ2W

All the previous math works!
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Model diagnostic

I Independence between G and U
I None

I Validity of the instruments
I F-statistics (> 10) is the rule of thumb

I Pleitropy
I Sargan’s test
I J-statistics

I Equavelence between βIV and βOLS .
I Durbin-Wu-Hausman test
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Weak instrument variable

I Evaluate the validity of the instrument variable by fitting the
following:

X̂ = G (G>G )−1GX

I Goodness of modeling fitting is assessed by F-statistics
I F-statistics > 10 indicates strong instrument variable
I F-statistics < 10 indicates weak instrument variable, which can

cause biased causal effect

25 / 34



Overidentifying restrictions and Sargan’s test

We can detect pleiotropy and the validity of IV if

I The number of IVs (I ) is more than the number of causal
effects (p) to be estimated; not all I equations can be exactly
zero

I The null hypothesis is G ⊥ (Y − Xβ)
I Instrument is orthogonal to the error term
I There is no direct effect left once conditional on X

I Sargan’s test (Sargan, 1958; Small, 2007) for 2SLS for I
instrumental variables and p = 1 causal effect :

{G (Y−θ̂2SLSX )}>{σ̂2G>G}−1{G (Y−θ̂2SLSX )} → χ2(l−1)

under the null that all instruments are valid.
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J-statistics

Hansen (1982) gave general results

Jn(β) = ngn(β)>Ŵ ngn(β)→ χ2(l − p)

as long as Ŵ n converges to the optimal W 0 and β is efficient
GMM estimator.

I Large J-statistic will reject null hypothesis so that at least one
instrument might be invalid
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Test the equality of IV estimator and OLS estimator

The null hypothesis is OLS is consistent and fully efficient

I If there is no unmeasured confounders, OLS estimator will be
consistent and efficient; IV is consistent under null or
alternative

I Large discrepancy between β̂OLS and β̂IV suggests that there
is confounding and OLS cannot be trusted.

I Durbin-Wu-Hausman test (Hausman, 1978)

(β̂IV − β̂OLS)>D−1(β̂IV − β̂OLS)→ χ2(p),

where D = Var(β̂IV )− Var(β̂OLS)
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One sample MR

I If we have everything in the same study (so-called one sample)

I Instrument variable (genetic variants)
I Exposure variable
I Outcome variable

I We could apply 2SLS to examine the causal effect of the
exposure variable on the outcome variable

I 2SLS has been implemented in the ivreg function in R
package AER
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Two sample MR

I One sample MR with 2SLS works great.
I Sometime, it is hard to have everything within the same study

I Instrument variable (genetic variants)
I Exposure variable
I Outcome variable

I We could apply two sample MR method.

β̂IV =
θ̂1
α̂1

I As long as we know the association between

1. Instrument variable and the Exposure variable α̂1

2. Instrument variable and the Outcome variable θ̂1

I The causal effect could be estimated
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Resources for instrumental variables

I Summary statistics of genome-wide association study
(GWAS):

I GWAS catalog: https://www.ebi.ac.uk/gwas/
I UK Biobank: https://docs.google.com/spreadsheets/d/

1kvPoupSzsSFBNSztMzl04xMoSC3Kcx3CrjVf4yBmESU

I Web application for two sample MR

I MR-base http://app.mrbase.org/
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Two sample MR
Methods:

I Single instrument variable: Wald method.

β̂IV =
β̂1
α̂1

I Single SNP
I Ploygeneic risk score (PRS): summarize of multiple SNPs

I Multiple instrument variables: inverse-variance weighted
(IVW) linear regression

See Hemani et al. (2018) for more details.
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Summary

I MR is an effect way to establish causal relationship.
I Goals:

1. Test existence of causal effect.
2. Estimate the strength of the causal effect.

I Three core assumptions:

1. Independence between G and U
2. Established association between G and X
3. No alternative pathway from G to Y , (exclusion restriction)

I Methods:

1. One sample MR
2. Two sample MR

I Model diagnostics.
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